
1

An Introductory Note about Notation

XML elements, for XACML and data files, are written as they appear in XML documents, and are
indicated in boldface text. For example: <Policy>.

XML attributes, for XACML and data files, are written as they appear in XML documents, and
are indicated in boldface text. For example: PolicyId.

Values of XACML and data elements appear in double quotes. For example: “Permit”.

We introduce some terms to serve as labels for certain groups of policy elements; these terms
are used to enable discussions about groups of elements as a whole. These terms appear in
italics. For example: class.

We use labels to refer to files, directories, and data items that exist in the accompanying virtual
machine. These labels are used in the style of Linux environment variables – they begin with a
dollar sign ($) which is followed by the label in all caps. For example: the label $POLICY_GUIDE
refers to the following path on the virtual machine, “/home/guide/policy-guide”.

The Technical Lessons

3.1.1 Policy Authoring and Evaluation Basics

Goals:

1. Understand the basic structure of a XACML policy.
2. Understand the basic structure of a XACML request.
3. Understand how to evaluate a policy against a XACML request with the SunXACML

library.
4. Understand the basic structure of a XACML response.

Summary:

In this Lesson, you will inspect simple XACML policies and XACML requests to learn the basic
syntax of XACML. You will then use the SunXACML library to evaluate a policy against a request
and learn how to read the XACML result. Also, you will be challenged with making edits to a
request to achieve certain results.

Steps:

3.1.1.1 Inspect Permit-Policy.xml

2

Line 1 contains the standard XML header tag. Line 2 has an XML comment that contains
copyright information (XML comments have no effect on XACML files). The <Policy> opening
tag is on Lines 3 – 5. A XACML policy has either a top-level <Policy> element or a top-level
<PolicySet> element1.

Line 3 contains the OASIS XML namespace for the XACML policy language. We strongly
recommend always including this namespace. Not including the namespace may make it more
difficult, or even impossible, for your policies to be processed by some automated tools2.

Line 4 contains the policy Identifier (PolicyId).

Line 5 contains the rule-combining algorithm (RuleCombiningAlgId). Rule combining algorithms
govern how multiple rules are aggregated within a single policy and are covered in Lesson 3.1.6.
The rule combining algorithm used here is “deny-overrides”. No rule combining algorithm will
have any effect on this <Policy> since this <Policy> contains only one <Rule>.

Lines 7 – 10 contain the <Description> of the <Policy>. <Policy>, <PolicySet>, and <Rule>
elements can contain <Description> elements. The <Description> is for informational purposes
only and has no effect on policy semantics.

The <Target> of the <Policy> is on Lines 12 – 22. A <Target> is a collection of attribute
predicates organized into classes. In general, a predicate is defined as a statement that can be
shown to be true or false, and in XACML, predicates are statements on attributes.

There are four classes of attributes in XACML: <Subjects>, <Resources>, <Actions>, and
<Environments>. A class can contain one or more instances. The <Resources> class can contain
one or more <Resource> instances; and so on. An instance can contain one or more match-
predicates. The match-predicates in <Action> instances are <ActionMatch> elements; the
match-predicates in <Environment> instances are <EnvironmentMatch> elements; and so on.
The <Target> of this <Policy> contains match-predicates for only the <Subjects> class.

Lines 13 – 21 contain the <Subjects> class which contains a single <Subject> instance (Lines 14
– 20). Lines 15 – 19 contain the single <SubjectMatch> match-predicate in the single <Subject>
instance. A match-predicate consists of three components: a MatchId, an <AttributeValue>,
and an attribute-reference. A MatchId is a reference to a XACML function that returns a
Boolean value3. An <AttributeValue> contains a DataType and a literal value. Attribute-
references refer to attributes in XACML Requests. An attribute-reference can be one of
attribute-designator or <AttributeSelector>4. Attribute-designators in the <Subjects> class are

1
 The <PolicySet> element is covered in Lesson 3.1.7.

2
 There are automated tools available to assist with authoring, testing, and analyzing XACML Policies.

3
 Only functions that take two primitive values (as opposed to collections of values, known as bags) as input are able

to be used as a MatchId. A complete list of standard XACML functions that can be used as a MatchId is in Section

7.5 of the XACML 2.0 Specification.
4
 <AttributeSelector> elements are covered in Section 3.1.4.

3

<SubjectAttributeDesignator> elements; attribute-designators in the <Resources> class are
<ResourceAttributeDesignator> elements; and so on.

In the <SubjectMatch> on Lines 15 – 19, the MatchId (Line 15) is specified to be “string-equal”.
The <AttributeValue> (Line 16) has a DataType of “string” and a value of “Top Secret”. The
<SubjectAttributeDesignator> refers to the “SecurityClearanceLevelCode” GFIPM attribute.
This predicate can be read: “the GFIPM Security Clearance Level Code of the Subject equals
‘Top Secret’.” A request by a user that has a Top Secret clearance will cause this predicate to be
true.

Let’s look at this predicate in more detail. There are three parts: (1) “the GFIPM Security
Clearance Level Code of the Subject”; (2) “equals”; and (3) “Top Secret”. The first part is an
attribute, the second part is an operation that will result in true or false (Boolean operation),
and the third part is a literal value. In general, a XACML predicate is a Boolean operation on two
attribute-expressions5. We define an attribute-expression as being a literal value, an attribute,
or a manipulation6 of an attribute.

In XACML, functions are used to build predicates. There are functions for common data
operators, such as “equals” and “add”, and more. A function will be specific to a certain
DataType (e.g., “string-equals” and “integer-equals”). There are functions to do operations on
strings, numeric values, Boolean values, date-time values, and more. A complete list of
standard XACML functions is in Appendix A.3 of the XACML 2.0 Specification.

The <Target> of the <Policy> will be applicable to requests for which the
“SecurityClearanceLevelCode” Subject attribute has a value of “Top Secret”. When the <Target>
of a <Policy> is applicable to a Request, then the <Rule> elements of that <Policy> are
evaluated against the request.

A XACML rule, represented by a <Rule> element, is the articulation of an authorization. A rule
contains an Effect, a decision of “Permit” or “Deny”, and collection of match-predicates in a
<Target>7. The match-predicates represent the authorized privileges. The Effect determines
whether the rule is a positive or negative authorization.

Every <Policy>, <Rule>, and <PolicySet> element is required to have exactly one <Target>
element8, however, the <Target> may be empty. An empty <Target> matches every request.
Also, every <Policy> element must specify exactly one rule-combining algorithm.

Lines 24 – 32 contain the single <Rule> of the <Policy>. The Effect of this Rule is “Permit”, and
the Rule Identifier (RuleId) is “Rule-1” (Line 24). An Effect can either be “Permit” or “Deny”.

5
 XACML predicates do not always have to be in this form, but the authors have never come across a predicate that

could not be normalized into this form.
6
 Manipulations on attributes are covered in Lesson 3.1.5.

7
 A <Rule> can optionally contain a <Condition>. <Condition> elements are covered in Lesson 3.1.5.

8
 Every <PolicySet> element is required to have exactly one <Target> element as well.

4

Lines 26 – 28 contain the <Description> of the <Rule>. The <Rule> has an empty <Target> (Line
30), which means that this <Rule> is applicable to all requests.

When a <Rule> is applicable to a request, then the <Rule> evaluates to its Effect. Therefore,
this <Policy> will evaluate to “Permit” for requests from Subjects that have a GFIPM Security
Clearance Level Code of “Top Secret”, regardless of any Resource, Action, and Environment
attributes that may exist in the requests.

A XACML policy can evaluate to one of four decisions:

 “Permit” – the requested action is to be allowed.

 “Deny” – the requested action is to be prohibited.

 “NotApplicable” – the policy doesn’t apply to the request.

 “Indeterminate” – there was an error during the evaluation.

3.1.1.2 Inspect Request-1.xml

A XACML request is the articulation of one or more Subjects (<Subject> elements) seeking to
perform a single Action (<Action> element) on one or more Resources (<Resource> elements)
in a single Environment (<Environment> element). Each <Subject>, <Action>, <Resource>, and
<Environment> element contains a set of zero or more <Attribute> elements. Each <Attribute>
contains an AttributeId (an attribute Identifier), a DataType, and one or more
<AttributeValue> elements. Each <AttributeValue> contains a single, literal value that must
match the DataType.

This request contains Subject (Lines 5 – 10), Resource (Lines 12 – 17), and Action (Lines 19 – 24)
attributes. There are no Environment attributes as shown on Line 26. This request can be read:
“A Subject with a GFIPM Security Clearance Level Code of ‘Top Secret’ is attempting ‘write’
access to ‘Resource-1’.”

The AttributeId of the single Resource <Attribute> is the standard XACML “resource-id”
Identifier. Every request must contain at least one <Attribute> that has the standard XACML
“resource-id” Identifier in at least one <Resource>.

3.1.1.3 Evaluate Permit-Policy against Request-1

First, let’s manually determine what the result should be. The PDP will first determine the
applicability of the policy’s <Target> to the request. To do this, the PDP will evaluate the match-
predicates of the <Target> using the attributes of the request.

The match-predicate in Permit-Policy contains an attribute-designator. An attribute-designator
is a reference to a particular <Attribute> in a request. When evaluating an attribute-designator

5

against a request, the PDP will attempt to locate the <Attribute> in the request that has the
following properties9:

 The <Attribute> must be in the same class as the attribute-designator.

 The <Attribute> must have the same AttributeId and DataType as the attribute-
designator.

If a matching <Attribute> exists in the request, then the PDP will retrieve the values of all the
<AttributeValue> elements of the <Attribute> (recall that an <Attribute> can have multiple
<AttributeValue> elements) as a bag10 of values. The PDP then invokes the function specified
by the MatchId of the match-predicate one time for each value of the bag. For each invocation,
the PDP will pass in the literal value of the <AttributeValue> of the match-predicate as the first
parameter, and a value of the bag as the second parameter. If at least one invocation returns
true, then the match-predicate evaluates to true. If all invocations return false, then the match-
predicate evaluates to false11. If no matching <Attribute> is found in the request, then the PDP
will retrieve an empty bag and the match-predicate will evaluate to false12.

The Subject attribute of Request-1 (Lines 5 – 10) will cause the match-predicate of Permit-Policy
on Lines 15 – 19 to be true. The Resource attribute of Request-1 (Lines 12 - 17) will be ignored
by Permit-Policy since the Policy is silent on Resource attributes. The Action attribute of
Request-1 (Lines 19 – 24) will be ignored by Permit-Policy since the Policy is silent on Action
attributes. All the predicates of the Target of Permit-Policy will match the request; therefore
the single <Rule> of Permit-Policy should be evaluated. Since the <Rule> has an empty
<Target>, it will evaluate to its Effect (“Permit”). Since this is the only <Rule> in the <Policy>,
the <Policy> should evaluate to “Permit”.

To continue this exercise, you must have downloaded a Virtual Machine Player from the
Internet and the GFIPM-SP virtual machine per the guidance in Appendix D.

Now, execute SunXACML’s SimplePDP13 with Request-1.xml and Permit-Policy.xml, and output
the result to Request-1_Permit-Policy_Response.xml and inspect the result. The command for
running the SimplePDP can be found in Appendix A.

Note that SimplePDP does not output the XML declaration tag or XML namespace information
in XACML responses.

9
 An attribute-designator can also optionally specify an Issuer. If an Issuer is specified, then a request <Attribute>

must have the same Issuer value in order to match the attribute-designator.
10

 A bag is a mathematical set in which a value can appear more than once.
11

 See the XACML Reference Tables in Appendix C for complete details.
12

 There is an optional MustBePresent property of attribute-references that changes this behavior. If the

MustBePresent property is true and no matching <Attribute> is found, then the match-predicate will evaluate to

“Indeterminate”. See the XACML Reference Tables in Appendix C for complete details.
13

 Follow the instructions in AppendixA: Common Tasks (Executing SimplePDP).

6

A XACML response is contained in a <Response> element (Lines 1 – 8). There is one <Result>
element (Lines 2 – 7) that corresponds to the Resource Identifier for which access was
requested (“Resource-1”).

The <Decision> is on Line 3 and is “Permit”.

Lines 4 – 6 contain the <Status> of the result and Line 5 contains the <StatusCode>. Returning a
<Status> is an optional feature of XACML. If a PDP returns a <Decision> of “Permit” or “Deny”,
then the <Status> should have a value of “ok” as it does on Line 5. We will not further
investigate the status feature in this Guide.

3.1.1.4 Inspect Deny-Policy.xml

This policy consists of a top-level <Policy> element. The <Target> of the <Policy> is very similar
to the <Target> of Permit-Policy. The <Target> of this policy is applicable to Subjects that have
a GFIPM Security Clearance Level Code of “Confidential”.

The <Policy> contains a single <Rule>, “Rule-1”, which has an Effect of “Deny”. The <Target> of
“Rule-1” is applicable to requests to perform the “write” Action. This <Rule> (and thus the
<Policy>), when evaluated against requests that are not performing the “write” Action, will
evaluate to “NotApplicable”.

3.1.1.5 Evaluate Deny-Policy against Request-1

First, let’s manually determine what the result should be. The lone <SubjectMatch> of the
<Target> of Deny-Policy (Lines 15 – 19) should match the lone Subject <Attribute> of Request-1
(Lines 6 – 9). However, the <SubjectMatch> will evaluate to false because the value of the
Subject <Attribute> of Request-1 (“Top Secret”) does not equal the <AttributeValue> of the
<SubjectMatch> of Deny-Policy (“Confidential”). Therefore, the <Target> of Deny-Policy will not
match Request-1, “Rule-1” will not be evaluated (even though it would have matched Request-
1), and Deny-Policy should evaluate to a decision of “NotApplicable”.

Now, execute SimplePDP with Deny-Policy.xml and Request-1.xml, and output the results to
Request-1_Deny-Policy_Response.xml and inspect the result. Confirm that the <Decision> of
the <Result> for “Resource-1” states “NotApplicable”.

3.1.1.6 Challenge: Create a request that will be applicable to Deny-Policy

Using the Emacs text editor or another text editor provided with the GFIPM-SP, make a copy of
the Request-1.xml file and name the copy “Request-2.xml”. Open Request-2.xml. The value of
the Subject <AttributeValue> on Line 8 should read “Top Secret”. Change this value to a value
that will make Request-2 cause Deny-Policy to evaluate to “Deny”.

7

The solution to this Challenge is in Request-2-Solution.xml.

3.1.1.7 Evaluate Deny-Policy against Request-2

First, let’s manually determine what the result should be. The Subject <Attribute> of Request-2
(Lines 6 – 9) should match the <SubjectMatch> of the <Target> of Deny-Policy (Lines 15 – 19).
The Resource <Attribute> of Request-2 (Lines 13 - 16) should be ignored by the <Target> of
Deny-Policy since the <Target> does not specify the <Resources> class. The Action <Attribute>
of Request-2 (Lines 20 - 23) should be ignored by the <Target> of Deny-Policy since the
<Target> does not specify the <Actions> class. Therefore, Rule-1 of Deny-Policy should be
evaluated against Request-2.

The Subject <Attribute> of Request-2 (Lines 6 - 9) should be ignored by the <Target> of Rule-1
since the <Target> does not specify the <Subjects> class. The Resource <Attribute> of Request-
2 (Lines 13 - 16) should be ignored by the <Target> of Rule-1 since the <Target> does not
specify the <Resources> class. The Action attribute of Request-2 (Lines 20 – 23) should match
the <ActionMatch> of the <Target> of Rule-1 (Lines 37 - 41). Therefore, Rule-1 should evaluate
to its Effect (“Deny”), and subsequently Deny-Policy should evaluate to “Deny”.

Now, execute SimplePDP with Deny-Policy.xml and Request-2.xml, and output the results to
Request-2_Deny-Policy_Response.xml. Confirm that the <Decision> for “Resource-1” is “Deny”.

3.1.1.8 Evaluate Permit-Policy against Request-2

First, let’s manually determine what the result should be. The lone <SubjectMatch> of the
<Target> of Permit-Policy (Lines 15 – 19) should match the lone Subject <Attribute> of Request-
2 (Lines 6 – 9). However, the <SubjectMatch> will evaluate to false because the value of the
Subject <Attribute> of Request-2 (“Confidential”) does not equal the <AttributeValue> of the
<SubjectMatch> of Permit-Policy (“Top Secret”). Therefore, the <Target> of Permit-Policy will
not match Request-2, “Rule-1” will not be evaluated (even though it would have matched
Request-2), and Permit-Policy should evaluate to a decision of “NotApplicable”.

Now, execute SimplePDP with Permit-Policy.xml and Request-2.xml, and output the results to
Request-2_Permit-Policy_Response.xml. Confirm that the <Decision> for “Resource-1” states
“NotApplicable”.

8

3.1.2 The “Attribute Value Spacing” Pitfall

Goals:

1. Understand what the Attribute Value Spacing Pitfall, and why it is problematic14.

Summary:
In this Lesson, you will compare two policies that have a subtle difference in the value of an
<AttributeValue> element. You will evaluate both policies against the same request and
analyze the different results.

Steps:

3.1.2.1 Inspect Permit-Policy.xml and Request-1.xml

Confirm that this Permit-Policy and Request-1 are the same as the Permit-Policy and Request-1
from Lesson 3.1.1.

3.1.2.2 Evaluate Permit-Policy against Request-1

Recall from Lesson 3.1.1 that the <Decision> should be “Permit”. Confirm that this is the case.

3.1.2.3 Compare Permit-Policy with Permit-Policy-2

See if you notice the subtle difference. The closing tag of the <AttributeValue> element in
Permit-Policy-2 on Line 16 does not come immediately after the value “Top Secret”. The
MatchId of the <SubjectMatch> (Line 15) is “string-equal”; during evaluation, this function will
take into account the extra spaces after the value “Top Secret”.

3.1.2.4 Evaluate Permit-Policy-2 against Request-1

Execute SimplePDP with Permit-Policy-2.xml and Request-1.xml, and output the results to
Request-1_Permit-Policy-2_Result.xml. Inspect Request-1_Permit-Policy-2_Response.xml.
Confirm that the <Decision> for “Resource-1” is “NotApplicable”. It is “NotApplicable” because
the value “Top Secret” in the <AttributeValue> in Request-1 on Line 7 is not the same as “Top
Secret” with extra spaces as stated in Permit-Policy-2.

14 You should be very diligent when authoring policies to avoid this problem. Also, it may be possible to construct an XSLT

stylesheet to ensure that this condition never occurs.

9

3.1.3 Multiple Match-Predicates per Instance, Multiple Instances per Class

Goals:

1. Understand the policy evaluation semantics for multiple match-predicates in an
instance.

2. Understand the policy evaluation semantics for multiple instances in a class.

Summary:

In this Lesson, you will analyze policies that have multiple match-predicates in an instance and
multiple instances in a class. You will learn the policy evaluation semantics for both scenarios;
multiple match-predicates in an instance are conjunctive while multiple instances in a class are
disjunctive. You will be challenged to author requests that will achieve certain results.

Steps:

3.1.3.1 Inspect Multiple-Predicate-Policy.xml

Open Multiple-Predicate-Policy.xml. Multiple-Predicate-Policy contains a <Target> (Lines 12 -
27) with only the <Subjects> class specified (Lines 13 – 26). It contains a single <Rule>, “Rule-1”
(Lines 29 – 37), that has an empty <Target> (Line 35) and an Effect of “Permit”.

The <Subjects> class of the policy <Target> contains a single <Subject> instance (Lines 14 – 25).
This instance contains two <SubjectMatch> match-predicate elements; the first is on Lines 15 –
19, and the second is on Lines 20 – 24. The first match-predicate can be read: “The GFIPM
Security Clearance Level Code of the Subject is ‘Top Secret’.” The second match-predicate can
be read: “The Subject is a Sworn Law Enforcement Officer.”

Note that the second match-predicate uses a MatchId of “boolean-equal”. This Function
compares two Boolean values for equality. When using the SunXACML library, literal Boolean
values (i.e., “true” and “false”) must be in lower case.

All match-predicates need to evaluate to true for the parent instance to match a request (see
Table 17: Instance Evaluation Table in the GPPTF Guide’s Appendix C for more details). In this
policy, requests for which the Subject is a Sworn Law Enforcement Officer with a Top Secret
Clearance will match the <Subject> instance. Since this is the only instance in the policy, and
the policy has a single rule, then this policy should evaluate to “Permit” for Sworn Law
Enforcement Officers who have a Top Secret Clearance performing any action to any resource
in any environment.

3.1.3.2 Inspect Multiple-Instance-Policy.xml

10

Open Multiple-Instance-Policy.xml. Multiple-Instance-Policy contains a <Target> (Lines 12 - 29)
with only the <Subjects> class specified (Lines 13 – 28). It contains a single <Rule>, “Rule-1”
(Lines 31 – 39), that has an empty <Target> (Line 37) and an Effect of “Permit”.

The <Subjects> class of the policy <Target> contains two <Subject> instances. The first is on
Lines 14 – 20, and the second is on Lines 21 – 27. Each <Subject> instance contains a single
<SubjectMatch> match-predicate.

The <SubjectMatch> of the first <Subject> (Lines 15 – 20) also exists in Multiple-Predicate-
Policy. It can be read: “The GFIPM Security Clearance Level Code of the Subject is ‘Top Secret’.”

The <SubjectMatch> match-predicate of the second <Subject> instance (Lines 22 – 26) also
exists in Multiple-Predicate-Policy. It can be read: “The Subject is a Sworn Law Enforcement
Officer.”

For a class to match a request, at least one of its instances must match the request (see Table
18: Class Evaluation Table in the GPPTF Guide’s Appendix C for more details). For this policy, the
<Subjects> class will match requests for which the Subject either has a Top Secret Clearance, or
is a Sworn Law Enforcement Officer, or both. Since the <Subjects> class is the only class
specified, and there is only one rule, this policy will evaluate to “Permit” for requests that its
<Subjects> class matches.

3.1.3.3 Compare Multiple-Predicate-Policy to Multiple-Instance-Policy

These policies both include the same match-predicates. However, since Multiple-Predicate-
Policy organizes the match-predicates within the same instance, and Multiple-Instance-Policy
organizes the match-predicates in separate instances, the semantics of these two policies are
different (as described in Steps 0 and 0). Multiple-Predicate-Policy is more restrictive since both
match-predicates must evaluate to true for that policy to be applicable to a request. Also,
Multiple-Instance-Policy will be applicable to every request to which Multiple-Predicate-Policy
is applicable.

3.1.3.4 Challenge: Create Request-1

Create a new XML file called “Request-1.xml”. In this file, author a request that will be
applicable to Multiple-Predicate-Policy. Because of how the two policies are written, this
request should also be applicable to Multiple-Instance-Policy. The request should include
Subject attributes, and a “resource-id” Resource attribute. For the “resource-id” attribute, use a
value of “Resource-1”. You can leave the Action and Environment sections empty.

A solution to this Challenge is in Request-1-Solution.xml.

11

3.1.3.5 Evaluate Multiple-Predicate-Policy against your Request-1

Confirm that the <Decision> for “Resource-1” is “Permit”.

3.1.3.6 Evaluate Multiple-Instance-Policy against your Request-1

Confirm that the <Decision> for “Resource-1” is “Permit”.

3.1.3.7 Challenge: Create Request-2

Create a new XML file called “Request-2.xml”. In this file, author a request that will not be
applicable to Multiple-Predicate-Policy, but will be applicable to Multiple-Instance-Policy. The
request should include Subject attributes, and a “resource-id” Resource attribute. For the
“resource-id” attribute, use a value of “Resource-1”. You can leave the Action and Environment
sections empty.

A solution to this Challenge is in Request-2-Solution.xml.

3.1.3.8 Evaluate Multiple-Predicate-Policy against your Request-2

Confirm that the <Decision> for “Resource-1” is “NotApplicable”.

3.1.3.9 Evaluate Multiple-Instance-Policy against your Request-2

Confirm that the <Decision> for “Resource-1” is “Permit”.

12

3.1.4 Referencing Resource Content

Goals:

1. Understand how to use the <AttributeSelector> element.
2. Understand how a Policy can use the content of resources in the evaluation process.

Summary:

This Lesson introduces the use of the <AttributeSelector> element. You will be asked to inspect
and analyze policies using this element, and make comparisons with policies that only use
attribute-designators. You will confirm the analysis by evaluating the policies against requests.
Finally, you will be challenged to edit a policy and a request to achieve specific results.

Steps:

3.1.4.1 Inspect Permit-Policy.xml and Request-1.xml

Confirm that this Permit-Policy and Request-1 are the same as the Permit-Policy and Request-1
from Lesson 3.1.1.

3.1.4.2 Evaluate Permit-Policy against Request-1

Recall from Lesson 3.1.1 that the <Decision> should be “Permit”. Confirm that this is the case.

3.1.4.3 Inspect Selector-Policy.xml

Selector-Policy is semantically the same as Permit-Policy, with two significant syntactical
differences. Recall from Lesson 3.1.1 that a match-predicate consist of three parts:

 A MatchId

 An <AttributeValue>

 An attribute-reference which can be an attribute-designator or an <AttributeSelector>
o The name of attribute-designator elements are dependent on which class the

attribute-designator is in. <Subjects> contain <SubjectAttributeDesignator>
elements and so on.

The <SubjectMatch> match-predicate of Selector-Policy uses an <AttributeSelector> attribute-
reference (Lines 18 – 19), while the <SubjectMatch> of Permit-Policy uses an attribute-
designator (<SubjectAttributeDesignator>) attribute-reference (Lines 17 – 18). The particular
<AttributeSelector> in Selector-Policy causes the exact same semantic effect as the
<SubjectAttributeDesignator> in Permit-Policy: it causes the PDP, when evaluating the policy
against a request, to retrieve the values of all <AttributeValue> elements (as a bag of values) of
the GFIPM Security Clearance Level Code Subject attribute of the request.

13

An <AttributeSelector> contains a DataType and a RequestContextPath. The value of a
RequestContextPath must be an XPath expression into the request context15. The PDP will
retrieve the set of nodes16 referenced by the RequestContextPath as a bag of values. If no
nodes are found, then the PDP returns an empty bag17.

Beware that XACML defines one XML namespace for policies and a separate namespace for the
XACML context. Since a RequestContextPath is an XPath expressions into the request context,
any policy that uses an <AttributeSelector> must declare the XACML context namespace. This is
done in Selector-Policy on Line 4; a prefix of “ctx” is used to represent the context namespace.
On Line 19, the “ctx” prefix is used in the XPath expression.

3.1.4.4 Evaluate Selector-Policy against Request-1

Confirm that the <Decision> for “Resource-1” is “Permit”.

3.1.4.5 Inspect ArrestRecord.xsd

This file is in the “$POLICY_GUIDE/arrest_record_simple/” directory. It contains an XML
Schema18 for an <ArrestRecord> element. We will use this schema to represent a set of Arrest
Records for which we want to protect access.

The schema defines an <ArrestRecord> element that contains seven sub-elements:

 <Id> - the identifier of the record.

 <SubjectId> - the identifier of the individual who was arrested.

 <Jurisdiction> - the jurisdiction in which the arrest occurred.

 <Date> - the date at which the arrest occurred.

 <ArrestingOfficerId> - the identifier of the arresting officer.

 <ArrestingOfficerAgencyName> - the name of the agency that employs the arresting
officer.

 <ArrestingOfficerEmailAddress> - the email address of the arresting officer.

An arrest record articulates that an officer arrested some individual on a particular date within
a particular jurisdiction. Valid values for jurisdiction are defined by the GFIPM Jurisdiction Code
Set19.

15

 The XACML “context” is the XML structures of requests and responses.
16

 A “node” is a term used in the context of XPath that means a part of an XML document.
17

 The optional MustBePresent property of attribute-references changes this behavior.
18

 The IEPD schema used here is technically not a genuine IEPD; however, the schema is NIEM IEPD-conformant

and provides a close approximation of a genuine IEPD.
19

 The GFIPM Jurisdiction code set is available at

http://gfipm.net/standards/metadata/2.0/codesets/GFIPMJurisdictionCode.html.

http://gfipm.net/standards/metadata/2.0/codesets/GFIPMJurisdictionCode.html

14

3.1.4.6 Inspect Record-1.xml

Confirm that this XML document conforms to ArrestRecord.xsd20. Record-1 states that Officer-1
arrested Subject-1 in Georgia on Valentine’s Day 2012.

3.1.4.7 Inspect Content-Request-1.xml

This request shows an example of how XML content can be included in a request. The
<ResourceContent> element (Lines 8 – 16) contains the content of the Record-1 Arrest Record
(Lines 9 – 15). Notice the declaration of the Arrest Record namespace on Line 10 and the use of
the “ar” prefix throughout the content of the Arrest Record.

Policies must use an <AttributeSelector> to retrieve values from a <ResourceContent> element
in a request.

3.1.4.8 Inspect Content-Policy-1.xml

This policy will evaluate to “Permit” for requests that contain an Arrest Record with a
Jurisdiction value of “GA”.

The <Target> (Lines 16 – 27) contains a single <ResourceMatch> match-predicate (Lines 19 –
24) that uses an <AttributeSelector> (Lines 21 – 23). The RequestContextPath (Line 23)
expression points to the value of the <Jurisdiction> element in an <ArrestRecord>.

Notice the use of the “ar” namespace prefix in the XPath expression and the declaration of the
Arrest Record namespace on Line 5. When using the SunXACML library, XPath expressions in
RequestContextPath XML-attributes must be XML namespace qualified.

This policy contains a single “Permit” <Rule> that has an empty <Target>.

3.1.4.9 Evaluate Content-Policy-1 against Content-Request-1

First, let’s manually determine what the result should be. If the single <ResourceMatch> of the
policy evaluates to true, then the policy should evaluate to “Permit”, otherwise the policy
should evaluate to “NotApplicable”.

The <ResourceMatch> will be true for requests that include an <ArrestRecord> that has a
<Jurisdiction> value of “GA”. Content-Request-1 has such an <ArrestRecord>, therefore
Content-Policy-1 should evaluate to “Permit”.

20

 This can be done by using an XML Schema validator to validate Record-1.xml against ArrestRecord.xsd.

15

Now, execute SimplePDP with Content-Request-1.xml and Content-Policy-1.xml, and output the
results to Content-Request-1_Content-Policy-1_Response.xml. Confirm that the <Decision> for
“Resource-1” is “Permit”.

3.1.4.10 Challenge: Add match-predicates to Content-Policy-1

Create a copy of Content-Policy-1 and call the new file: “Content-Policy-2.xml”. Open Content-
Policy-2.xml. On Line 5, change the end of the PolicyId to read “Content-Policy-2”.

In the existing <Resource> instance (Lines 18 – 25), create a new <ResourceMatch> that
articulates this predicate: “the Subject Id of the Arrest Record equals ‘Subject-1’.”

Notice that the subject of the Arrest Record is handled in the <Resources> class because it is a
part of the resource content and is not the subject of the request.

Create the <Subjects> class (currently non-existent) in the <Target> of the policy, and include
one <Subject> instance. In this <Subject>, create a <SubjectMatch> that articulates this
predicate: “The request Subject is a Sworn Law Enforcement Officer.” Use the GFIPM Sworn
Law Enforcement Officer Indicator attribute identifier21.

A solution to this Challenge is in Content-Policy-2-Solution.xml.

3.1.4.11 Evaluate Content-Policy-2 against Content-Request-1

Evaluate your Content-Policy-2 against Content-Request-1. Confirm that the <Decision> for
“Resource-1” is “NotApplicable”. This should be because the <SubjectMatch> you created in
Content-Policy-2 should evaluate to false; Content-Request-1 is silent on Subject attributes.
Recall that all four classes must match a request in order for the parent <Target> to match the
request.

3.1.4.12 Challenge: Create a request that is applicable to Content-Policy-2

Create a copy of Content-Request-1 and call the new file: “Content-Request-2”. Edit Content-
Request-2 to make it applicable to Content-Policy-2.

A solution to this Challenge is in Content-Request-2-Solution.xml.

3.1.4.13 Evaluate Content-Policy-2 against Content-Request-2

21

 Details on the GFIPM Sworn Law Enforcement Officer Indicator attribute are at

http://gfipm.net/standards/metadata/2.0/user/SwornLawEnforcementOfficerIndicator.html.

http://gfipm.net/standards/metadata/2.0/user/SwornLawEnforcementOfficerIndicator.html

16

Evaluate your Content-Policy-2 against Content-Request-2. Confirm that the <Decision> for
“Resource-1” is “Permit”.

17

3.1.5 Rule Conditions

Goals:

1. Understand the need for rule conditions.
2. Understand how rule conditions affect rule evaluation.
3. Understand how to properly author rule conditions.

Summary:

This Lesson introduces rule conditions. Through inspecting, analyzing, and evaluating sample
policies, you are led to understand the need for and semantics of conditions. You will be
challenged to author a rule that contains a condition.

Steps:

3.1.5.1 Inspect Condition-Policy-1.xml

This policy has an empty <Target> and a single <Rule>, “Rule-1”, whose Effect is “Deny”. Rule-1
has an empty <Target> and a <Condition> (Lines 25 – 33).

A <Condition> is a type of predicate that is more flexible than a match-predicate. Match-
predicates have three main limitations:

1. They use a “hard-coded”, literal value (in an <AttributeValue>).
2. They can only involve a single attribute.
3. Only a subset of XACML functions can be used.

Examples of predicates that match-predicates cannot articulate are:

 The Jurisdiction of the Resource content does not equal “GA”.

 The Jurisdiction of the Resource content is one of “MD” or “VA”.22

 The Subject’s Security Clearance Level Code equals the Resource’s Security Clearance
Level code.

A <Condition> contains a single top-level <Apply> element. An <Apply> element, via the
FunctionId property (see Line 26), is the specification of an invocation of a XACML function.
Unlike with match-predicates, this function can be any function that returns a Boolean value;
there is no restriction on the number or types of input parameters23. Therefore, parameters to
the function may include:

 Literal values, via an <AttributeValue> element

 <AttributeSelector> elements

 Attribute-designator elements

22 This predicate could be expressed using multiple match-predicates, but not a single one.
23 Recall that match-predicates can only use functions that return a Boolean value and takes in two primitive values as

parameters.

18

 Other function invocations, via other <Apply> elements

 “Function pointers”, via <Function> elements24

If a <Condition> exists in a <Rule>, then that <Condition> must evaluate to true for the <Rule>
to be applicable to a request (see Table 20: Rule Evaluation Table in the GPPTF Guide’s
Appendix C for more details).

The <Condition> of Rule-1 in Condition-Policy-1 uses the XACML “not” function as its top-level
function call. This function takes in a single Boolean parameter and returns the opposite of that
parameter (i.e., true becomes false, and false becomes true). The parameter to the “not”
function is another <Apply> element (Line 27) specifying a call to the “string-is-in” function.

The “string-is-in” function takes in two parameters. The first must be a primitive string value.
Line 28 specifies an <AttributeValue> with a literal value of “GA” as the first parameter. The
second parameter to “string-is-in” must be a bag of string values. Lines 29 – 30 specify an
<AttributeSelector>, which results in a bag of values, as the second parameter. The “string-is-
in” function returns true if the first parameter is equal to at least one of the values of the
second parameter.

This <Condition> predicate can be read: “the Arrest Record does not contain a Jurisdiction
value of ‘GA’.” When this rule condition is true, the rule will evaluate to its Effect: “Deny”.

3.1.5.2 Inspect Request-1.xml

This is the same as Content-Request-1 of Lesson 3.1.4, except that the Jurisdiction of the Arrest
Record is “FL” instead of “GA”.

3.1.5.3 Evaluate Condition-Policy-1 against Request-1

The <Decision> for “Resource-1” should be “Deny” since the Jurisdiction of the Arrest Record in
the Resource content is not “GA” (it is “FL”). Confirm that this is the case.

3.1.5.4 Inspect Condition-Policy-2.xml

This policy, like Condition-Policy-1, has an empty <Target> and a single <Rule>, “Rule-1”, with
an empty <Target> and a <Condition>.

The <Condition> (Lines 25 – 33) uses the “any-of-any” XACML function at its top-level. This
function takes in three parameters. The first parameter must be a <Function> element

24

 The difference between the <Apply> element and the <Function> element should become apparent through the

examples provided in this Lesson.

19

specifying a function that returns a Boolean and takes in two primitive values. The second and
third parameters must be bags of values, and the DataType values of those bags must match
the expected DataType values of the <Function> element. The “any-of-any” function applies
the function specified by the first parameter between each value of the second parameter and
each value of the third parameter. The “any-of-any” function returns true if at least one of the
<Function> invocations returns true. Otherwise, the “any-of-any” function returns false.

The <Condition> of Rule-1 will evaluate to true if the Employment Jurisdiction of the request
Subject matches the Jurisdiction of the Arrest Record.

3.1.5.5 Inspect Request-2.xml

The structure of Request-2 is similar to Request-1 of this Lesson, except that Request-2 contains
a GFIPM Employment Jurisdiction Subject attribute. Also note that the values of the requested
Resource Arrest Record have been changed.

3.1.5.6 Evaluate Condition-Policy-2 against Request-2

The <Decision> for “Resource-2” should be “Permit” since the GFIPM Employment Jurisdiction
of the Subject is the same as the Jurisdiction of the Arrest Record (“FL”). Confirm that this is the
case.

3.1.5.7 Evaluate Request-3

Request-3 is similar to Request-2. The only difference is that Request-3 has a different Subject
attribute. Request-3 specifies that the Subject’s GFIPM Federation Id is “Officer-3”.

3.1.5.8 Challenge: Create a new policy

Create a file called: “Condition-Policy-3.xml”. In this file, author a policy that will permit a
Subject to read Arrest Records for which the Subject was the arresting officer. In other words,
the GFIPM Federation Id of the request Subject must equal the value of the
<ArrestingOfficerId> element in the Arrest Record, and the request Subject must be performing
the “read” Action.

A solution to this Challenge is in Condition-Policy-3-Solution.xml.

3.1.5.9 Evaluate Condition-Policy-3 against Request-3

Confirm that the <Decision> for “Resource-3” is “Permit”.

20

3.1.5.10 Inspect Condition-Policy-4.xml

This policy has an empty <Target> and a single <Rule> with an empty <Target> and one
<Condition>. The <Condition> expresses the predicate: “the current date is less than the date
of the accessed record plus sixty months (five years).” Note that a simpler way to word this
predicate is: “the accessed record is less than sixty months (five years) old.” However, this
simpler wording is not in a form that’s directly implementable in XACML.

The attribute-expression “the date on the accessed record plus sixty months” expresses a
manipulation on the “record date” attribute; that attribute is manipulated by adding 60
months.

The top-level Function of the <Condition> is “date-less-than”, which takes in two parameters of
type “date” and returns true if the first parameter is an earlier date than the second parameter.
If the first parameter equals the second parameter or if the first parameter is a later date than
the second parameter, then “date-less-than” returns false.

The first parameter of “date-less-than” (Lines 28 – 32) is effectively the date at which the
request was constructed by the PEP. The XACML “current-date” Environment attribute
represents this date25. An attribute-designator is used (see Lines 29 – 31) which provides a bag
of values, but the “date-less-than” function requires a single primitive value, not a bag.
Therefore, the “date-one-and-only” function (Line 28) is used. This function returns the single
date primitive value from a bag of date values or throws an error if there is more than one
value in the bag.

The second parameter of “date-less-than” (Lines 33 – 41) expresses the “date on the accessed
record plus sixty months” attribute-expression. The “date-add-yearMonthDuration” function
(Line 34) returns the result of adding a duration of years and months (in this case 60 months;
see Lines 39 - 40) to a date value (in this case the date on the accessed record; see Lines 35 –
38).

3.1.5.11 Evaluate Condition-Policy-4 against Request-4 and Request-5

Request-4 is similar to Request-1. The main difference is that Request-4 seeks access to an
Arrest Record from Valentine’s Day 2007 and includes a value for the XACML current-date
Environment attribute. Recall that this attribute represents the date at which the XACML
request was created and is used in the <Condition> in Condition-Policy-4. Request-4 expresses
a XACML request that was constructed by the PEP on Valentine’s Day 2012.

25

 XACML request construction is covered in Lesson 3.3.3.2.

21

The value of the current-date Environment attribute is exactly five years later than the date of
the record. Therefore, Request-4 should cause Condition-Policy-4 to evaluate to
“NotApplicable”. Evaluate Condition-Policy-4 against Request-4 and confirm this result.

Now, inspect Request-5.xml. Request-5 is the same as Request-4 except that the current-date
attribute of Request-5 has the value of “2012-02-13” which is just one day less than five years
later than the date of the record. Request-5 should therefore cause Condition-Policy-4 to
evaluate to “Permit”. Evaluate Condition-Policy-4 against the Request-5 and confirm the result.

22

3.1.6 Aggregating Multiple Rules

Goals:

1. Understand how to aggregate multiple rules into a single policy.
2. Understand the potential for conflicts.
3. Understand how rule combining algorithms are used.

Summary:

In this Lesson, you will inspect, analyze, manipulate, and evaluate policies that have multiple
rules. You will learn about conflicts among rules and how rule-combining algorithms resolve
those conflicts. Also, you will be challenged with authoring a policy that expresses a source
policy with multiple rules.

Steps:

3.1.6.1 Inspect Policy-1.xml

This policy has an empty <Target> and contains two rules. The first rule (Lines 16 – 35), “Rule-
1”, has an Effect of “Permit”. The second rule (Lines 37 – 65), “Rule-2”, has an Effect of “Deny”.
Rule-1 can be read: “Officers can perform any Action in any Environment on Arrest Records for
which they are the arresting officer.” Rule-2 can be read: “Arrest Records in the ‘MD’
Jurisdiction cannot be deleted by any Subject in any Environment.”

The two rules have conflicting Effect values. During evaluation against a request, if both rules
are applicable to the request, the policy will evaluate to “Deny” due to its rule-combining
algorithm.

The rule-combining algorithm of the policy is “deny-overrides” (see Line 6). With “deny-
overrides”, if any rule evaluates to “Deny”, then the policy will evaluate to “Deny”. If no rule
evaluates to “Deny”, but at least one rule evaluates to “Permit”, then the policy will evaluate to
“Permit”. Otherwise, the policy will evaluate to “NotApplicable”.

Along with “deny-overrides”, main rule-combining algorithms available in XACML are “permit-
overrides” and “first-applicable”26. The “permit-overrides” algorithm can be considered the
inverse of “deny-overrides”: “Permit” decisions take precedence over “Deny” decisions. With
the “first-applicable” algorithm, the rules are evaluated in the order as they appear in the
policy; the policy evaluates to the Effect of the first rule that is applicable to the request, or
“NotApplicable” if no rules are applicable.27

26

 The complete list and semantic definitions of all standard rule combining algorithms is in Appendix C of the

XACML 2.0 Specification.
27

 These are simplified descriptions of the semantics of “deny-overrides”, “permit-overrides”, and “first-applicable”.

These algorithms also handle cases where a rule evaluates to “Indeterminate”.

23

3.1.6.2 Inspect Request-1.xml

Request-1 is the articulation of a request by Officer-1 to delete Resource-1 which is an Arrest
Record. Officer-1 is the arresting officer and the arrest Jurisdiction is “VA”.

3.1.6.3 Evaluate Policy-1 against Request-1

First, let’s manually determine what the result should be. Since the policy uses the “deny-
overrides” combining algorithm, we should check Rule-2 (the “Deny” rule) first. Rule-2 is not
applicable to the request since the Jurisdiction in the request is “VA” and not “MD”.

Now, let’s consider Rule-1. Rule-1 is applicable to the request since Officer-1 is attempting
access on a record of which Officer-1 is the arresting officer. Therefore, the policy should
evaluate to “Permit”.

Confirm that the <Decision> of Resource-1 is “Permit”.

3.1.6.4 Inspect Request-2.xml

Request-2 is the articulation of a request by Officer-2 to delete Resource-2, which is an Arrest
Record. Officer-2 is the arresting officer and the Jurisdiction is “MD”.

3.1.6.5 Evaluate Policy-1 against Request-2

First, let’s manually determine what the result should be. We’ll check Rule-2 first. Rule-2 should
be applicable to the request since the Jurisdiction in the request is “MD”. Since a “Deny” rule is
applicable, and since the rule-combining algorithm is “deny-overrides”, there is no need to
check Rule-1. The policy should evaluate to “Deny”.

Confirm that the <Decision> of Resource-2 is “Deny”.

3.1.6.6 Inspect Request-3.xml

Request-3 is the articulation of a request by Officer-3 to read Resource-3, which is an Arrest
Record. Officer-4 is the arresting officer and the Jurisdiction is “MD”.

3.1.6.7 Evaluate Policy-1 against Request-3

24

First, let’s manually determine what the result should be. We’ll check Rule-2 first. Rule-2 should
not be applicable to Request-3 since Rule-2 applies to the delete Action and Request-3 seeks a
read Action.

Now, let’s consider Rule-1. Rule-1 should not be applicable to the request since the request
Subject, Officer-3, does not match the arrest record’s OfficerID, Officer-4. Therefore, the policy
should evaluate to “NotApplicable”.

Confirm that the <Decision> for Resource-3 is “NotApplicable”.

3.1.6.8 Challenge: Create a new policy with multiple rules

The <Description> of Policy-1 (Lines 8 – 12) states: “Officers can perform any Action on Arrest
Records for which they are the arresting officer. However, under no circumstances can records
in the ‘MD’ Jurisdiction be deleted.” Your Challenge is to create a new policy with a slightly
different articulation: “Officers can perform any Action on Arrest Records for which they are
the arresting officer. However, under no circumstances can records in the ‘MD’ Jurisdiction be
deleted, except by holders of a Top Secret Clearance. Holders of a Top Secret Clearance can
perform any Action on any Record in any Environment.”

Save your new policy in a file called “Policy-2.xml”. There are several possible solutions to this
Challenge. One solution is provided in Policy-2-Solution.xml.

3.1.6.9 Inspect Policy-2-Solution.xml

Let’s compare Policy-2-Solution to Policy-1. The rule-combining algorithm was changed to “first-
applicable”. A new Rule-1 provides total access to request Subjects with a Top Secret Security
Clearance Level Code. Rule-2 stayed the same. Rule-1 from Policy-1 became Rule-3 in Policy-2-
Solution.

The Description of Rule-1 of Policy-2-Solution (Lines 20 – 23) states: “Holders of a Top Secret
Clearance can perform any Action on any Record in any Environment.” When evaluating this
policy against a request, the PDP will first evaluate Rule-1. If Rule-1 applies to a request, then
the “first-applicable” rule-combining algorithm tells the PDP to proceed no further and to apply
the Effect of Rule-1: “Permit”. If Rule-1 is not applicable to the request, then the PDP will
evaluate Rule-2. If Rule-2 is not applicable to the request, then the PDP will evaluate Rule-3. If
Rule-3 is not applicable, then the policy will evaluate to “NotApplicable”.

3.1.6.10 Inspect Request-4.xml

25

Request-4 can be articulated as follows: “Officer-4, who has a Top Secret Clearance, is
attempting to delete Resource-4, which is an Arrest Record. Officer-4 is the arresting officer and
the Jurisdiction is ‘MD’.”

3.1.6.11 Evaluate Policy-2 against Request-4

Use Request-4 to test your Policy-2 (and Policy-2-Solution). Confirm that the <Decision> for
Resource-4 evaluates to “Permit”, since the request matches Rule-1.

3.1.6.12 Inspect Request-5.xml

Request-5 can be articulated as follows: “Officer-5, who has a “Secret” Clearance, is attempting
to delete Resource-5, which is an Arrest Record. Officer-5 is the arresting officer and the
Jurisdiction is ‘MD’.”

3.1.6.13 Evaluate Policy-2 against Request-5

Use Request-5 to test your Policy-2 (and Policy-2-Solution). Rule-1 should not be applicable to
the request since Officer-5 does not have a “Top Secret” Clearance. Rule-2 should be applicable
since the request is an attempt to delete an Arrest Record in the “MD” Jurisdiction. Therefore,
Policy-2 should evaluate to “Deny”.

Confirm that the <Decision> for Resource-5 is “Deny”.

3.1.6.14 Inspect Request-6.xml

Request-6 can be articulated as follows: “Officer-6, who has a Secret Clearance, is attempting to
delete Resource-6, which is an Arrest Record. Officer-6 is the arresting officer and the
Jurisdiction is ‘VA’.”

3.1.6.15 Evaluate Policy-2 against Request 6

Use Request-6 to test your Policy-2 (and Policy-2-Solution). Rule-1 should not be applicable to
the request since Officer-6 does not have a Top Secret Clearance. Rule-2 should not be
applicable since the Jurisdiction of the record is not “MD”. Rule-3 should be applicable since
Officer-6 is both the Subject of the request and the arresting officer on the record. Therefore,
Policy-2 should evaluate to “Permit”.

Confirm that the <Decision> for Resource-6 is “Permit”.

26

3.1.7 Aggregating Multiple Policies

Goals:

1. Understand how to aggregate multiple <Policy> elements in a <PolicySet> element.

Summary:

In this Lesson, you will inspect, analyze, and evaluate a policy consisting of a top-level
<PolicySet> element and multiple <Policy> sub-elements. We provide the context of a local
implementing agency needing to aggregate policies from multiple levels of authority,
illustrating how policy-combining algorithms resolve conflicts among policies in a policy set.

Steps:

3.1.7.1 Inspect PolicySet-1.xml

PolicySet-1 is a <PolicySet>. It has a PolicySetId identifier (Line 5), and a
PolicyCombiningAlgorithm of “permit-overrides” (Line 6). Policy-combining algorithms work in
a similar manner to rule-combining algorithms. PolicySet-1 specifies a <Target> (Lines 16 – 26)
and two <Policy> elements (the first on Lines 28 – 103 and the second on Lines 105 – 160). The
first <Policy> represents a federation-level policy (of the “ExampleFederation”) and the second
represents a policy that’s local to the agency that is implementing this <PolicySet> (“Agency-
A”).

This <PolicySet> is concerned with access to the criminal history records of Agency-A. Arrest
Records constitute the entirety of criminal history data of Agency-A. Accordingly, the <Target>
of the <PolicySet> specifies that the GFIPM Criminal History Data Indicator of the Resource
must be true.

The first <Policy>, Federation-Policy-1, is the federation-level policy. It can be articulated as: “A
federated user can read criminal history data (Arrest Records) if that user meets the following
criteria: they are a sworn law enforcement officer, they possess the criminal history data
agency home search privilege, and they have legal jurisdiction in the jurisdiction of the
record.”28 The Subject match-predicate on Lines 53 – 57 uses the “string-regexp-match” XACML
function to determine if the Subject is a member of ExampleFederation by checking the GFIPM
Federation Id attribute29.

The second <Policy>, Local-Policy-1, is the local-level policy. It can be articulated as: “All sworn
law enforcement officers of Agency-A who are authorized to search criminal history data are
allowed to read any criminal history record.”

28

 Note that Federation-Policy-1 duplicates the <ResourceMatch> that is in the <Target> of the <PolicySet>

because Federation-Policy-1 needs to be a complete policy in and of itself.
29

 See http://gfipm.net/standards/metadata/2.0/user/FederationId.html.

http://gfipm.net/standards/metadata/2.0/user/FederationId.html

27

PolicySet-1 uses the “permit-overrides” policy combining algorithm, therefore “Permit”
decisions take precedence over “Deny” decisions. However, since PolicySet-1 does not contain
any “Deny” rules, it will never evaluate to “Deny”. It can only evaluate to “Permit” or
“NotApplicable”30.

3.1.7.2 Evaluate PolicySet-1 against Request-1

The <Target> of PolicySet-1 will match Request-1 since the request is for criminal history data.
Therefore, Federation-Policy-1 will be evaluated.

Federation-Policy-1 will not be applicable to the request since the jurisdiction of the request
Subject (“VA”) does not match the jurisdiction of the record (“GA”). Therefore, Local-Policy-1
will be evaluated.

Local-Policy-1 will be applicable to the request since the Subject is a member of Agency-A (see
Lines 6 – 8 of Request-1), is a sworn law enforcement officer, and is authorized to search
criminal history data records (see Lines 24 – 27 of Request-1). Therefore, PolicySet-1 should
evaluate to “Permit”.

Confirm that the <Decision> for Resource-1 is “Permit”.

3.1.7.3 Evaluate PolicySet-1 against Request-2

The <Target> of PolicySet-1 will match Request-1 since the request is for criminal history data.
Therefore, Federation-Policy-1 will be evaluated.

Federation-Policy-1 will not be applicable to the request since the Subject does not have the
criminal history data home agency search privilege (see Lines 20 – 23 of Request-2). Therefore,
Local-Policy-1 will be evaluated.

Local-Policy-1 will not be applicable to the request since the Subject is not a member of Agency-
A (see Lines 6 – 8 of Request-2). Therefore, PolicySet-1 should evaluate to “NotApplicable”.

Confirm that the <Decision> for Resource-2 is “NotApplicable”.

3.1.7.4 Evaluate PolicySet-1 against Request-3

30

 Theoretically, PolicySet-1 can also evaluate to “Indeterminate”, however, we have designed the policy and

requests to avoid this result.

28

The <Target> of PolicySet-1 will match Request-1 since the request is for criminal history data.
Therefore, Federation-Policy-1 will be evaluated.

Federation-Policy-1 will be applicable to the request (you should be able to determine why).
Therefore Federation-Policy-1 should evaluate to “Permit”. Given the policy-combining
algorithm “permit-overrides”, there will be no need to evaluate Local-Policy-1, and PolicySet-1
should evaluate to “Permit”.

Confirm that the <Decision> for Resource-3 is “Permit”.

29

3.1.8 Obligations

Goals:

1. Understand how obligations are expressed in XACML.
2. Understand that obligation semantics are outside of the scope of XACML.

Summary:

This Lesson introduces obligations. You will analyze and evaluate a policy containing multiple
obligations. There is a discussion on the design and handling of obligations.

Steps:

3.1.8.1 Inspect Policy-1.xml

Policy-1 is based on the Policy-1 from Lesson 3.1.6, with the addition of obligations using the
<Obligations> element (Lines 67 – 91).

In the abstract sense, an obligation is an action that must be performed in conjunction with
policy enforcement. This policy contains three obligations: the first is on Line 69, the second is
on Line 71, and the third is on Lines 73 – 89.

An obligation in XACML (an <Obligation> element) has a FulfillOn property, an ObligationId
property, and a set of zero or more <AttributeAssignment> elements. The FulfillOn property
specifies the decision on which the obligation must be fulfilled; the value of this property can
be “Permit” or “Deny”. The ObligationId is the identifier of the obligation. An
<AttributeAssignment> is an argument31 of the obligation. An <AttributeAssignment> contains
a DataType, an identifier as an AttributeId, and a literal value.

The first obligation in Policy-1, LogValidAccess, is to be fulfilled on “Permit”; the PDP will
include this obligation in the result when the decision is “Permit”. The LogInvalidAccess
obligation is to be fulfilled on “Deny”; the PDP will include this obligation in the result when the
decision is “Deny”. These obligations instruct the PEP to write data about the access to an audit
log. The PEP must recognize and know how to handle these obligations. If a PEP does not
understand or cannot fulfill an obligation, then the PEP must not allow access. For these
example obligations in particular, we assume that the PEP (or its Obligation Handler
components) will know how to retrieve the appropriate data to write to the log.

The third obligation, NotifyDataOwner, instructs the PEP to send a notification to the owner of
the accessed record. In our scenario, the owner of an Arrest Record is the arresting officer. This
obligation has three <AttributeAssignment> elements. The first is DataOwnerId and the value is

31

 An “argument” is data that is needed for the proper processing of the obligation.

30

actually an <AttributeSelector> containing an XPath expression selecting the value of the
<OfficerId> element of the Arrest Record being accessed. Notice that the angled brackets are
URL encoded (i.e., “<” becomes “<” and “>” becomes “>”); the PDP will decode these in
the result. We assume that the PEP/Obligation Handler will process this <AttributeSelector> to
retrieve the value for the DataOwnerId argument. We also assume that the PEP/Obligation
Handler will be able to retrieve the appropriate address for the arresting officer.

The second argument is DataRequestorId and the value is the URL encoded
<SubjectAttributeDesignator> that will retrieve the appropriate value.

The third argument is Message; this is the actual text that should be sent to the arresting
officer. We assume that the PEP will replace “[DataRequestorId]” with the result of processing
the second argument.

How obligations are designed will affect how the PEP (or its Obligation Handler components)
will be designed. Design options include identifier naming conventions, whether to include
arguments, and which arguments to include. We developed a particular design style for this
tutorial, but there are currently no standard obligation design patterns available. As stated in
the GPPTF Guide’s Section (Step 6, Requirement C), the Global Federated Identity and Technical
Privacy Task Team is currently developing a standardized syntax and processing model for
various types of policy obligations.

Since no XACML obligations are returned on the “NotApplicable” decision, care must be taken
in designing policies to avoid this decision where appropriate so that all necessary obligations
are properly returned to the PEP.

3.1.8.2 Evaluate Policy-1 against Request-1

This is the same Request-1 from Lesson 3.1.6; therefore we know that the decision will be
“Permit”. Use SimplePDP to evaluate Policy-1 against Request-1, output the result to “Request-
1_Policy-1_Response.xml”, and open the result. Confirm that the <Decision> for Resource-1 is
“Permit”.

Notice the <Obligations> element on Lines 7 – 22. This element contains the two obligations
that were specified to be fulfilled on “Permit”. The PDP simply copies the appropriate
obligations into the result (and decodes any URL-encoded values).

3.1.8.3 Evaluate Policy-1 against Request-2

This is the same Request-2 from Lesson 3.1.6; therefore we know that the decision will be
“Deny”. Use SimplePDP to evaluate Policy-1 against Request-2, output the result to “Request-

31

2_Policy-1_Result.xml”, and open the result. Confirm that the <Decision> for Resource-2 is
“Deny”.

This result includes the obligation that was specified to be fulfilled on “Deny” (see Lines 7 – 10).

3.1.8.4 Evaluate Policy-1 against Request-3

This is the same Request-3 from Lesson 3.1.6; therefore we know that the decision will be
“NotApplicable”. Use SimplePDP to evaluate Policy-1 against Request-3, output the result to
“Request-3_Policy-1_Result.xml”, and open the result. Confirm that the <Decision> for
Resource-3 is “NotApplicable”. Since the decision is “NotApplicable”, no obligations were
returned in the result.

