
1

Technical Lesson 3.1.3

Multiple Match-Predicates per Instance, Multiple Instances per Class

Goals:

1. Understand the policy evaluation semantics for multiple match-predicates in an
instance.

2. Understand the policy evaluation semantics for multiple instances in a class.

Summary:

In this Lesson, you will analyze policies that have multiple match-predicates in an instance and
multiple instances in a class. You will learn the policy evaluation semantics for both scenarios;
multiple match-predicates in an instance are conjunctive while multiple instances in a class are
disjunctive. You will be challenged to author requests that will achieve certain results.

Steps:

3.1.3.1 Inspect Multiple-Predicate-Policy.xml

Open Multiple-Predicate-Policy.xml. Multiple-Predicate-Policy contains a <Target> (Lines 12 -
27) with only the <Subjects> class specified (Lines 13 – 26). It contains a single <Rule>, “Rule-1”
(Lines 29 – 37), that has an empty <Target> (Line 35) and an Effect of “Permit”.

The <Subjects> class of the policy <Target> contains a single <Subject> instance (Lines 14 – 25).
This instance contains two <SubjectMatch> match-predicate elements; the first is on Lines 15 –
19, and the second is on Lines 20 – 24. The first match-predicate can be read: “The GFIPM
Security Clearance Level Code of the Subject is ‘Top Secret’.” The second match-predicate can
be read: “The Subject is a Sworn Law Enforcement Officer.”

Note that the second match-predicate uses a MatchId of “boolean-equal”. This Function
compares two Boolean values for equality. When using the SunXACML library, literal Boolean
values (i.e., “true” and “false”) must be in lower case.

All match-predicates need to evaluate to true for the parent instance to match a request (see
Table 17: Instance Evaluation Table in the GPPTF Guide’s Appendix C for more details). In this
policy, requests for which the Subject is a Sworn Law Enforcement Officer with a Top Secret
Clearance will match the <Subject> instance. Since this is the only instance in the policy, and
the policy has a single rule, then this policy should evaluate to “Permit” for Sworn Law
Enforcement Officers who have a Top Secret Clearance performing any action to any resource
in any environment.

2

3.1.3.2 Inspect Multiple-Instance-Policy.xml

Open Multiple-Instance-Policy.xml. Multiple-Instance-Policy contains a <Target> (Lines 12 - 29)
with only the <Subjects> class specified (Lines 13 – 28). It contains a single <Rule>, “Rule-1”
(Lines 31 – 39), that has an empty <Target> (Line 37) and an Effect of “Permit”.

The <Subjects> class of the policy <Target> contains two <Subject> instances. The first is on
Lines 14 – 20, and the second is on Lines 21 – 27. Each <Subject> instance contains a single
<SubjectMatch> match-predicate.

The <SubjectMatch> of the first <Subject> (Lines 15 – 20) also exists in Multiple-Predicate-
Policy. It can be read: “The GFIPM Security Clearance Level Code of the Subject is ‘Top Secret’.”

The <SubjectMatch> match-predicate of the second <Subject> instance (Lines 22 – 26) also
exists in Multiple-Predicate-Policy. It can be read: “The Subject is a Sworn Law Enforcement
Officer.”

For a class to match a request, at least one of its instances must match the request (see Table
18: Class Evaluation Table in the GPPTF Guide’s Appendix C for more details). For this policy, the
<Subjects> class will match requests for which the Subject either has a Top Secret Clearance, or
is a Sworn Law Enforcement Officer, or both. Since the <Subjects> class is the only class
specified, and there is only one rule, this policy will evaluate to “Permit” for requests that its
<Subjects> class matches.

3.1.3.3 Compare Multiple-Predicate-Policy to Multiple-Instance-Policy

These policies both include the same match-predicates. However, since Multiple-Predicate-
Policy organizes the match-predicates within the same instance, and Multiple-Instance-Policy
organizes the match-predicates in separate instances, the semantics of these two policies are
different (as described in Steps 0 and 0). Multiple-Predicate-Policy is more restrictive since both
match-predicates must evaluate to true for that policy to be applicable to a request. Also,
Multiple-Instance-Policy will be applicable to every request to which Multiple-Predicate-Policy
is applicable.

3.1.3.4 Challenge: Create Request-1

Create a new XML file called “Request-1.xml”. In this file, author a request that will be
applicable to Multiple-Predicate-Policy. Because of how the two policies are written, this
request should also be applicable to Multiple-Instance-Policy. The request should include
Subject attributes, and a “resource-id” Resource attribute. For the “resource-id” attribute, use a
value of “Resource-1”. You can leave the Action and Environment sections empty.

3

A solution to this Challenge is in Request-1-Solution.xml.

3.1.3.5 Evaluate Multiple-Predicate-Policy against your Request-1

Confirm that the <Decision> for “Resource-1” is “Permit”.

3.1.3.6 Evaluate Multiple-Instance-Policy against your Request-1

Confirm that the <Decision> for “Resource-1” is “Permit”.

3.1.3.7 Challenge: Create Request-2

Create a new XML file called “Request-2.xml”. In this file, author a request that will not be
applicable to Multiple-Predicate-Policy, but will be applicable to Multiple-Instance-Policy. The
request should include Subject attributes, and a “resource-id” Resource attribute. For the
“resource-id” attribute, use a value of “Resource-1”. You can leave the Action and Environment
sections empty.

A solution to this Challenge is in Request-2-Solution.xml.

3.1.3.8 Evaluate Multiple-Predicate-Policy against your Request-2

Confirm that the <Decision> for “Resource-1” is “NotApplicable”.

3.1.3.9 Evaluate Multiple-Instance-Policy against your Request-2

Confirm that the <Decision> for “Resource-1” is “Permit”.

A Note about Notation

XML elements, for XACML and data files, are written as they appear in XML documents, and are
indicated in boldface text. For example: <Policy>.

XML attributes, for XACML and data files, are written as they appear in XML documents, and
are indicated in boldface text. For example: PolicyId.

Values of XACML and data elements appear in double quotes. For example: “Permit”.

4

We introduce some terms to serve as labels for certain groups of policy elements; these terms
are used to enable discussions about groups of elements as a whole. These terms appear in
italics. For example: class.

We use labels to refer to files, directories, and data items that exist in the accompanying virtual
machine. These labels are used in the style of Linux environment variables – they begin with a
dollar sign ($) which is followed by the label in all caps. For example: the label $POLICY_GUIDE
refers to the following path on the virtual machine, “/home/guide/policy-guide”.

