
Technical Lesson 3.1.2

The “Attribute Value Spacing” Pitfall

Goals:

1. Understand what the Attribute Value Spacing Pitfall, and why it is problematic1.

Summary:
In this Lesson, you will compare two policies that have a subtle difference in the value of an
<AttributeValue> element. You will evaluate both policies against the same request and
analyze the different results.

Steps:

3.1.2.1 Inspect Permit-Policy.xml and Request-1.xml

Confirm that this Permit-Policy and Request-1 are the same as the Permit-Policy and Request-1
from Lesson 3.1.1.

3.1.2.2 Evaluate Permit-Policy against Request-1

Recall from Lesson 3.1.1 that the <Decision> should be “Permit”. Confirm that this is the case.

3.1.2.3 Compare Permit-Policy with Permit-Policy-2

See if you notice the subtle difference. The closing tag of the <AttributeValue> element in
Permit-Policy-2 on Line 16 does not come immediately after the value “Top Secret”. The
MatchId of the <SubjectMatch> (Line 15) is “string-equal”; during evaluation, this function will
take into account the extra spaces after the value “Top Secret”.

3.1.2.4 Evaluate Permit-Policy-2 against Request-1

Execute SimplePDP with Permit-Policy-2.xml and Request-1.xml, and output the results to
Request-1_Permit-Policy-2_Result.xml. Inspect Request-1_Permit-Policy-2_Response.xml.
Confirm that the <Decision> for “Resource-1” is “NotApplicable”. It is “NotApplicable” because
the value “Top Secret” in the <AttributeValue> in Request-1 on Line 7 is not the same as “Top
Secret” with extra spaces as stated in Permit-Policy-2.

1 You should be very diligent when authoring policies to avoid this problem. Also, it may be possible to construct an XSLT

stylesheet to ensure that this condition never occurs.

A Note about Notation

XML elements, for XACML and data files, are written as they appear in XML documents, and are
indicated in boldface text. For example: <Policy>.

XML attributes, for XACML and data files, are written as they appear in XML documents, and
are indicated in boldface text. For example: PolicyId.

Values of XACML and data elements appear in double quotes. For example: “Permit”.

We introduce some terms to serve as labels for certain groups of policy elements; these terms
are used to enable discussions about groups of elements as a whole. These terms appear in
italics. For example: class.

We use labels to refer to files, directories, and data items that exist in the accompanying virtual
machine. These labels are used in the style of Linux environment variables – they begin with a
dollar sign ($) which is followed by the label in all caps. For example: the label $POLICY_GUIDE
refers to the following path on the virtual machine, “/home/guide/policy-guide”.

