
1

Tech Lesson 3.1.1

Policy Authoring and Evaluation Basics

Goals:

1. Understand the basic structure of a XACML policy.
2. Understand the basic structure of a XACML request.
3. Understand how to evaluate a policy against a XACML request with the SunXACML

library.
4. Understand the basic structure of a XACML response.

Summary:

In this Lesson, you will inspect simple XACML policies and XACML requests to learn the basic
syntax of XACML. You will then use the SunXACML library to evaluate a policy against a request
and learn how to read the XACML result. Also, you will be challenged with making edits to a
request to achieve certain results.

Steps:

3.1.1.1 Inspect Permit-Policy.xml

Line 1 contains the standard XML header tag. Line 2 has an XML comment that contains
copyright information (XML comments have no effect on XACML files). The <Policy> opening
tag is on Lines 3 – 5. A XACML policy has either a top-level <Policy> element or a top-level
<PolicySet> element1.

Line 3 contains the OASIS XML namespace for the XACML policy language. We strongly
recommend always including this namespace. Not including the namespace may make it more
difficult, or even impossible, for your policies to be processed by some automated tools2.

Line 4 contains the policy Identifier (PolicyId).

Line 5 contains the rule-combining algorithm (RuleCombiningAlgId). Rule combining algorithms
govern how multiple rules are aggregated within a single policy and are covered in Lesson 3.1.6.
The rule combining algorithm used here is “deny-overrides”. No rule combining algorithm will
have any effect on this <Policy> since this <Policy> contains only one <Rule>.

1 The <PolicySet> element is covered in Lesson 3.1.7.
2 There are automated tools available to assist with authoring, testing, and analyzing XACML Policies.

2

Lines 7 – 10 contain the <Description> of the <Policy>. <Policy>, <PolicySet>, and <Rule>
elements can contain <Description> elements. The <Description> is for informational purposes
only and has no effect on policy semantics.

The <Target> of the <Policy> is on Lines 12 – 22. A <Target> is a collection of attribute
predicates organized into classes. In general, a predicate is defined as a statement that can be
shown to be true or false, and in XACML, predicates are statements on attributes.

There are four classes of attributes in XACML: <Subjects>, <Resources>, <Actions>, and
<Environments>. A class can contain one or more instances. The <Resources> class can contain
one or more <Resource> instances; and so on. An instance can contain one or more match-
predicates. The match-predicates in <Action> instances are <ActionMatch> elements; the
match-predicates in <Environment> instances are <EnvironmentMatch> elements; and so on.
The <Target> of this <Policy> contains match-predicates for only the <Subjects> class.

Lines 13 – 21 contain the <Subjects> class which contains a single <Subject> instance (Lines 14
– 20). Lines 15 – 19 contain the single <SubjectMatch> match-predicate in the single <Subject>
instance. A match-predicate consists of three components: a MatchId, an <AttributeValue>,
and an attribute-reference. A MatchId is a reference to a XACML function that returns a
Boolean value3. An <AttributeValue> contains a DataType and a literal value. Attribute-
references refer to attributes in XACML Requests. An attribute-reference can be one of
attribute-designator or <AttributeSelector>4. Attribute-designators in the <Subjects> class are
<SubjectAttributeDesignator> elements; attribute-designators in the <Resources> class are
<ResourceAttributeDesignator> elements; and so on.

In the <SubjectMatch> on Lines 15 – 19, the MatchId (Line 15) is specified to be “string-equal”.
The <AttributeValue> (Line 16) has a DataType of “string” and a value of “Top Secret”. The
<SubjectAttributeDesignator> refers to the “SecurityClearanceLevelCode” GFIPM attribute.
This predicate can be read: “the GFIPM Security Clearance Level Code of the Subject equals
‘Top Secret’.” A request by a user that has a Top Secret clearance will cause this predicate to be
true.

Let’s look at this predicate in more detail. There are three parts: (1) “the GFIPM Security
Clearance Level Code of the Subject”; (2) “equals”; and (3) “Top Secret”. The first part is an
attribute, the second part is an operation that will result in true or false (Boolean operation),
and the third part is a literal value. In general, a XACML predicate is a Boolean operation on two

3
 Only functions that take two primitive values (as opposed to collections of values, known as bags) as input are able

to be used as a MatchId. A complete list of standard XACML functions that can be used as a MatchId is in Section

7.5 of the XACML 2.0 Specification.
4
 <AttributeSelector> elements are covered in Section 3.1.4.

3

attribute-expressions5. We define an attribute-expression as being a literal value, an attribute,
or a manipulation6 of an attribute.

In XACML, functions are used to build predicates. There are functions for common data
operators, such as “equals” and “add”, and more. A function will be specific to a certain
DataType (e.g., “string-equals” and “integer-equals”). There are functions to do operations on
strings, numeric values, Boolean values, date-time values, and more. A complete list of
standard XACML functions is in Appendix A.3 of the XACML 2.0 Specification.

The <Target> of the <Policy> will be applicable to requests for which the
“SecurityClearanceLevelCode” Subject attribute has a value of “Top Secret”. When the <Target>
of a <Policy> is applicable to a Request, then the <Rule> elements of that <Policy> are
evaluated against the request.

A XACML rule, represented by a <Rule> element, is the articulation of an authorization. A rule
contains an Effect, a decision of “Permit” or “Deny”, and collection of match-predicates in a
<Target>7. The match-predicates represent the authorized privileges. The Effect determines
whether the rule is a positive or negative authorization.

Every <Policy>, <Rule>, and <PolicySet> element is required to have exactly one <Target>
element8, however, the <Target> may be empty. An empty <Target> matches every request.
Also, every <Policy> element must specify exactly one rule-combining algorithm.

Lines 24 – 32 contain the single <Rule> of the <Policy>. The Effect of this Rule is “Permit”, and
the Rule Identifier (RuleId) is “Rule-1” (Line 24). An Effect can either be “Permit” or “Deny”.
Lines 26 – 28 contain the <Description> of the <Rule>. The <Rule> has an empty <Target> (Line
30), which means that this <Rule> is applicable to all requests.

When a <Rule> is applicable to a request, then the <Rule> evaluates to its Effect. Therefore,
this <Policy> will evaluate to “Permit” for requests from Subjects that have a GFIPM Security
Clearance Level Code of “Top Secret”, regardless of any Resource, Action, and Environment
attributes that may exist in the requests.

A XACML policy can evaluate to one of four decisions:

 “Permit” – the requested action is to be allowed.

 “Deny” – the requested action is to be prohibited.

 “NotApplicable” – the policy doesn’t apply to the request.

 “Indeterminate” – there was an error during the evaluation.

5
 XACML predicates do not always have to be in this form, but the authors have never come across a predicate that

could not be normalized into this form.
6
 Manipulations on attributes are covered in Lesson 3.1.5.

7
 A <Rule> can optionally contain a <Condition>. <Condition> elements are covered in Lesson 3.1.5.

8
 Every <PolicySet> element is required to have exactly one <Target> element as well.

4

3.1.1.2 Inspect Request-1.xml

A XACML request is the articulation of one or more Subjects (<Subject> elements) seeking to
perform a single Action (<Action> element) on one or more Resources (<Resource> elements)
in a single Environment (<Environment> element). Each <Subject>, <Action>, <Resource>, and
<Environment> element contains a set of zero or more <Attribute> elements. Each <Attribute>
contains an AttributeId (an attribute Identifier), a DataType, and one or more
<AttributeValue> elements. Each <AttributeValue> contains a single, literal value that must
match the DataType.

This request contains Subject (Lines 5 – 10), Resource (Lines 12 – 17), and Action (Lines 19 – 24)
attributes. There are no Environment attributes as shown on Line 26. This request can be read:
“A Subject with a GFIPM Security Clearance Level Code of ‘Top Secret’ is attempting ‘write’
access to ‘Resource-1’.”

The AttributeId of the single Resource <Attribute> is the standard XACML “resource-id”
Identifier. Every request must contain at least one <Attribute> that has the standard XACML
“resource-id” Identifier in at least one <Resource>.

3.1.1.3 Evaluate Permit-Policy against Request-1

First, let’s manually determine what the result should be. The PDP will first determine the
applicability of the policy’s <Target> to the request. To do this, the PDP will evaluate the match-
predicates of the <Target> using the attributes of the request.

The match-predicate in Permit-Policy contains an attribute-designator. An attribute-designator
is a reference to a particular <Attribute> in a request. When evaluating an attribute-designator
against a request, the PDP will attempt to locate the <Attribute> in the request that has the
following properties9:

 The <Attribute> must be in the same class as the attribute-designator.

 The <Attribute> must have the same AttributeId and DataType as the attribute-
designator.

If a matching <Attribute> exists in the request, then the PDP will retrieve the values of all the
<AttributeValue> elements of the <Attribute> (recall that an <Attribute> can have multiple
<AttributeValue> elements) as a bag10 of values. The PDP then invokes the function specified
by the MatchId of the match-predicate one time for each value of the bag. For each invocation,
the PDP will pass in the literal value of the <AttributeValue> of the match-predicate as the first
parameter, and a value of the bag as the second parameter. If at least one invocation returns
true, then the match-predicate evaluates to true. If all invocations return false, then the match-

9
 An attribute-designator can also optionally specify an Issuer. If an Issuer is specified, then a request <Attribute>

must have the same Issuer value in order to match the attribute-designator.
10

 A bag is a mathematical set in which a value can appear more than once.

5

predicate evaluates to false11. If no matching <Attribute> is found in the request, then the PDP
will retrieve an empty bag and the match-predicate will evaluate to false12.

The Subject attribute of Request-1 (Lines 5 – 10) will cause the match-predicate of Permit-Policy
on Lines 15 – 19 to be true. The Resource attribute of Request-1 (Lines 12 - 17) will be ignored
by Permit-Policy since the Policy is silent on Resource attributes. The Action attribute of
Request-1 (Lines 19 – 24) will be ignored by Permit-Policy since the Policy is silent on Action
attributes. All the predicates of the Target of Permit-Policy will match the request; therefore
the single <Rule> of Permit-Policy should be evaluated. Since the <Rule> has an empty
<Target>, it will evaluate to its Effect (“Permit”). Since this is the only <Rule> in the <Policy>,
the <Policy> should evaluate to “Permit”.

To continue this exercise, you must have downloaded a Virtual Machine Player from the
Internet and the GFIPM-SP virtual machine per the guidance in Appendix D.

Now, execute SunXACML’s SimplePDP13 with Request-1.xml and Permit-Policy.xml, and output
the result to Request-1_Permit-Policy_Response.xml and inspect the result. The command for
running the SimplePDP can be found in Appendix A.

Note that SimplePDP does not output the XML declaration tag or XML namespace information
in XACML responses.

A XACML response is contained in a <Response> element (Lines 1 – 8). There is one <Result>
element (Lines 2 – 7) that corresponds to the Resource Identifier for which access was
requested (“Resource-1”).

The <Decision> is on Line 3 and is “Permit”.

Lines 4 – 6 contain the <Status> of the result and Line 5 contains the <StatusCode>. Returning a
<Status> is an optional feature of XACML. If a PDP returns a <Decision> of “Permit” or “Deny”,
then the <Status> should have a value of “ok” as it does on Line 5. We will not further
investigate the status feature in this Guide.

3.1.1.4 Inspect Deny-Policy.xml

This policy consists of a top-level <Policy> element. The <Target> of the <Policy> is very similar
to the <Target> of Permit-Policy. The <Target> of this policy is applicable to Subjects that have
a GFIPM Security Clearance Level Code of “Confidential”.

11

 See the XACML Reference Tables in Appendix C for complete details.
12

 There is an optional MustBePresent property of attribute-references that changes this behavior. If the

MustBePresent property is true and no matching <Attribute> is found, then the match-predicate will evaluate to

“Indeterminate”. See the XACML Reference Tables in Appendix C for complete details.
13

 Follow the instructions in Appendix A: Common Tasks (Executing SimplePDP).

6

The <Policy> contains a single <Rule>, “Rule-1”, which has an Effect of “Deny”. The <Target> of
“Rule-1” is applicable to requests to perform the “write” Action. This <Rule> (and thus the
<Policy>), when evaluated against requests that are not performing the “write” Action, will
evaluate to “NotApplicable”.

3.1.1.5 Evaluate Deny-Policy against Request-1

First, let’s manually determine what the result should be. The lone <SubjectMatch> of the
<Target> of Deny-Policy (Lines 15 – 19) should match the lone Subject <Attribute> of Request-1
(Lines 6 – 9). However, the <SubjectMatch> will evaluate to false because the value of the
Subject <Attribute> of Request-1 (“Top Secret”) does not equal the <AttributeValue> of the
<SubjectMatch> of Deny-Policy (“Confidential”). Therefore, the <Target> of Deny-Policy will not
match Request-1, “Rule-1” will not be evaluated (even though it would have matched Request-
1), and Deny-Policy should evaluate to a decision of “NotApplicable”.

Now, execute SimplePDP with Deny-Policy.xml and Request-1.xml, and output the results to
Request-1_Deny-Policy_Response.xml and inspect the result. Confirm that the <Decision> of
the <Result> for “Resource-1” states “NotApplicable”.

3.1.1.6 Challenge: Create a request that will be applicable to Deny-Policy

Using the Emacs text editor or another text editor provided with the GFIPM-SP, make a copy of
the Request-1.xml file and name the copy “Request-2.xml”. Open Request-2.xml. The value of
the Subject <AttributeValue> on Line 8 should read “Top Secret”. Change this value to a value
that will make Request-2 cause Deny-Policy to evaluate to “Deny”.

The solution to this Challenge is in Request-2-Solution.xml.

3.1.1.7 Evaluate Deny-Policy against Request-2

First, let’s manually determine what the result should be. The Subject <Attribute> of Request-2
(Lines 6 – 9) should match the <SubjectMatch> of the <Target> of Deny-Policy (Lines 15 – 19).
The Resource <Attribute> of Request-2 (Lines 13 - 16) should be ignored by the <Target> of
Deny-Policy since the <Target> does not specify the <Resources> class. The Action <Attribute>
of Request-2 (Lines 20 - 23) should be ignored by the <Target> of Deny-Policy since the
<Target> does not specify the <Actions> class. Therefore, Rule-1 of Deny-Policy should be
evaluated against Request-2.

The Subject <Attribute> of Request-2 (Lines 6 - 9) should be ignored by the <Target> of Rule-1
since the <Target> does not specify the <Subjects> class. The Resource <Attribute> of Request-
2 (Lines 13 - 16) should be ignored by the <Target> of Rule-1 since the <Target> does not

7

specify the <Resources> class. The Action attribute of Request-2 (Lines 20 – 23) should match
the <ActionMatch> of the <Target> of Rule-1 (Lines 37 - 41). Therefore, Rule-1 should evaluate
to its Effect (“Deny”), and subsequently Deny-Policy should evaluate to “Deny”.

Now, execute SimplePDP with Deny-Policy.xml and Request-2.xml, and output the results to
Request-2_Deny-Policy_Response.xml. Confirm that the <Decision> for “Resource-1” is “Deny”.

3.1.1.8 Evaluate Permit-Policy against Request-2

First, let’s manually determine what the result should be. The lone <SubjectMatch> of the
<Target> of Permit-Policy (Lines 15 – 19) should match the lone Subject <Attribute> of Request-
2 (Lines 6 – 9). However, the <SubjectMatch> will evaluate to false because the value of the
Subject <Attribute> of Request-2 (“Confidential”) does not equal the <AttributeValue> of the
<SubjectMatch> of Permit-Policy (“Top Secret”). Therefore, the <Target> of Permit-Policy will
not match Request-2, “Rule-1” will not be evaluated (even though it would have matched
Request-2), and Permit-Policy should evaluate to a decision of “NotApplicable”.

Now, execute SimplePDP with Permit-Policy.xml and Request-2.xml, and output the results to
Request-2_Permit-Policy_Response.xml. Confirm that the <Decision> for “Resource-1” states
“NotApplicable”.

A Note about Notation

XML elements, for XACML and data files, are written as they appear in XML documents, and are
indicated in boldface text. For example: <Policy>.

XML attributes, for XACML and data files, are written as they appear in XML documents, and
are indicated in boldface text. For example: PolicyId.

Values of XACML and data elements appear in double quotes. For example: “Permit”.

We introduce some terms to serve as labels for certain groups of policy elements; these terms
are used to enable discussions about groups of elements as a whole. These terms appear in
italics. For example: class.

We use labels to refer to files, directories, and data items that exist in the accompanying virtual
machine. These labels are used in the style of Linux environment variables – they begin with a
dollar sign ($) which is followed by the label in all caps. For example: the label $POLICY_GUIDE
refers to the following path on the virtual machine, “/home/guide/policy-guide”.

