

Global Privacy Policy Technical

Framework (GPPTF)

Implementation Guide

FINAL DRAFT 2012-05-14

 i

Table of Contents

TABLE OF CONTENTS I

 INTRODUCTION 1 1

1.1 SCOPE OF THIS GUIDE 1
1.2 INTENDED AUDIENCE 2
1.3 PRIMER ON RELATED TOPICS AND TECHNOLOGIES 2
1.3.1 TERMS AND DEFINITIONS RELATED TO AUTHORIZATION, ACCESS CONTROL AND PRIVACY

POLICIES 2
1.3.2 GLOBAL REFERENCE ARCHITECTURE AND GLOBAL PRIVACY POLICY TECHNICAL FRAMEWORK 3
1.3.3 EXTENSIBLE ACCESS CONTROL MARKUP LANGUAGE 5
1.3.4 GLOBAL FEDERATED IDENTITY AND PRIVILEGE MANAGEMENT (GFIPM) 6
1.3.5 NATIONAL INFORMATION EXCHANGE MODEL 7
1.3.6 ILLUSTRATION AND SUMMARY 7
1.4 HOW TO USE THIS DOCUMENT 8

 XACML REFERENCE ARCHITECTURE 9 2

2.1 PREREQUISITES 9
2.2 MAJOR ARCHITECTURAL COMPONENTS AND TECHNOLOGIES 9
2.2.1 CORE ARCHITECTURAL COMPONENTS 9
2.2.2 CORE AND RELATED TECHNOLOGIES 11
2.3 USE CASES AND INTEGRATION POINTS 13
2.3.1 REQUESTOR ACCESSES SENSITIVE RESOURCE 13
2.3.2 ADMINISTRATOR MANAGES ACCESS CONTROL POLICY 20

 STEP-BY-STEP SAMPLE IMPLEMENTATION TUTORIAL 23 3

3.1 THE SYNTAX AND EVALUATION PROCESS OF XACML 23
3.1.1 POLICY AUTHORING AND EVALUATION BASICS 24
3.1.2 THE “ATTRIBUTE VALUE SPACING” PITFALL 30
3.1.3 MULTIPLE MATCH-PREDICATES PER INSTANCE, MULTIPLE INSTANCES PER CLASS 31
3.1.4 REFERENCING RESOURCE CONTENT 34
3.1.5 RULE CONDITIONS 38
3.1.6 AGGREGATING MULTIPLE RULES 43
3.1.7 AGGREGATING MULTIPLE POLICIES 47
3.1.8 OBLIGATIONS 49
3.2 THE SAMPLE IMPLEMENTATION POLICY AND DATA RESOURCES 51
3.2.1 THE NIEM IEPD-COMPLIANT DATA SCHEMAS 51
3.2.2 THE SOURCE POLICIES AND SAMPLE IMPLEMENTATION CONTEXT 52
3.2.3 IDENTIFICATION OF ATTRIBUTES AND PREDICATES 53
3.2.4 OBLIGATION DESIGN 58
3.2.5 SAMPLE IMPLEMENTATION USERS, RESOURCES, AND TEST CASES 60
3.2.6 XACML POLICY IMPLEMENTATION 63
3.3 THE SAMPLE IMPLEMENTATION COMPONENTS 70
3.3.1 OVERVIEW OF THE SAMPLE IMPLEMENTATION 70
3.3.2 IMPLEMENTATION OF THE POLICY SERVICES 75

 ii

3.3.3 THE GFIPM WSP / PEP 77
3.3.4 THE WSC / WEB PORTAL AND TEST CASES 81
3.3.5 MODIFICATION POINTS OF THE SAMPLE IMPLEMENTATION 83

 ANALYSIS AND DISCUSSION OF SAMPLE IMPLEMENTATION 84 4

4.1 REQUIREMENT FOR SECURE COMMUNICATIONS CHANNELS 85
4.2 REQUIREMENT FOR TRUSTED REQUESTOR ATTRIBUTES 87
4.3 REQUIREMENT FOR A COMMON INTERFACE BETWEEN REQUESTOR AND PEP 87
4.4 REQUIREMENT FOR TRANSLATION FROM APPLICATION ENVIRONMENT TO XACML 88
4.5 REQUIREMENT FOR AN ACCURATE AND EFFICIENT ATTRIBUTE RETRIEVAL ALGORITHM 88
4.6 REQUIREMENT FOR PROPER RESOLUTION OF ENTITIES SPECIFIED IN OBLIGATIONS 88
4.7 REQUIREMENT FOR A PROCESSING MODEL TO HANDLE “OUT-OF-BAND” OBLIGATIONS 89

 FURTHER READING 89 5

APPENDIX A: COMMON TASKS 91

APPENDIX B: LABELS 95

APPENDIX C: XACML REFERENCE TABLES 96

APPENDIX D: VIRTUAL MACHINE DETAILS AND INSTALLED SOFTWARE 99

 1

 Introduction 1

The purpose of this Implementation Guide is to build on the Global Privacy Policy
Technical Framework (GPPTF)1 Implementation Primer2 and provide detailed
instruction on implementing externalized3 access control and privacy policy
services. The GPPTF Implementation Primer provides high-level technical guidance
on steps for analyzing privacy policies and the software components needed to
implement an externalized access control and privacy policy service. This guide
builds upon the GPPTF Implementation Primer by providing a “hands-on” technical
tutorial for implementing such services in an enterprise. The tutorial references are
supplemented by a downloadable, executable sample information-sharing
application. The downloadable software application provides a simulated
environment in which to study and practice various skills that are required for the
implementation of externalized access control within production-quality
applications.

1.1 Scope of This Guide

The scope of this Implementation Guide includes the following topics:

1. The implementation of an externalized authorization and privacy policy
service framework, based on GPPTF and the eXtensible Access Control
Markup Language (XACML);

2. The development of XACML policies based on source policies, including
aggregating multiple policies from multiple levels of authority;

3. The configuration of a XACML policy evaluation engine;
4. The construction of XACML access requests, and the parsing of XACML

decision responses;
5. The integration of the policy framework with a Global Federated Identity and

Privilege Management (GFIPM) web service;
6. The integration of the policy framework with a National Information

Exchange Model (NIEM) Information Exchange Package Description (IEPD);
and

7. The handling of policy obligations.

1 See http://it.ojp.gov/docdownloader.aspx?ddid=1195 for the Global Privacy Policy Technical Framework document.
2 [Add a URL or other reference to the GPPTF Implementation Primer here.]
3 The term “externalized” in this context means external to any specific business application.

 2

The following items are out-of-scope:

1. The development of source privacy policies4;
2. The assessment of existing information sharing systems to determine their

level of compatibility with an externalized access control and privacy policy
service framework5;

3. Details about developing web service components that conform to the GFIPM
suite of standards6;

4. The creation of a NIEM IPED7; and
5. Other security issues, such as network security, physical security, system

administration, governance, and management.

1.2 Intended Audience

The intended audience for this guide is anybody who plays a role in the
implementation of information sharing computer systems. This includes the
following categories of individuals:

1. IT Directors who manage and oversee the design, implementation, and
operation of IT systems;

2. Enterprise architects who develop and enforce business process and IT
standards;

3. Policy analysts who develop organizational security and privacy policies
and multiagency agreements; and

4. Project managers, application architects, and technologists who manage,
design, implement, or support IT systems.

1.3 Primer on Related Topics and Technologies

This section provides a primer on topics and technologies that are either directly or
tangentially related to this Implementation Guide. Pointers and references to
additional information are provided where appropriate.

1.3.1 Terms and Definitions Related to Authorization, Access Control and Privacy

Policies

Authorization refers to the process of granting privileges to subjects (users and
other entities) of a system, and also refers to the privileges themselves. Access

4 Development of source privacy policies is covered in the Global Privacy and Civil Liberties Policy Development

Guide and Implementation Templates document. See http://www.it.ojp.gov/privacy for more information.
5 Assessment of existing systems and applications is covered in the Privacy Policy Automation - Readiness Self-

Assessment document. See [URL or reference] for more information.
6 See http://gfipm.net/ for more information about GFIPM.
7 The IEM Model Package Description Specification document contains more information about creating NIEM
IEPDs. See http://reference.niem.gov/niem/specification/model-package-description/1.0/model-package-description-
1.0.pdf for more information.

 3

control is the process of controlling access by subjects to protected resources, and
this process takes into account authorizations granted by one or more authorities.
The term electronic access control is used within the context of computerized
information resources. All references to the term access control in this guide
correspond to electronic access control, unless explicitly stated otherwise. An access
control mechanism is a software component that is responsible for mediating access
to protected information resources. It is configured with a set of access control
rules: statements declaring that a set of entities can or cannot perform a set of
actions on a set of resources under a set of conditions. The set of rules implemented
by an access control mechanism comprise the access control policy for that
mechanism. When an entity requests access to a resource, the access control
mechanism evaluates its policy, determines whether to grant access, and enforces
the decision. This guide covers the development of electronic access control policies
based on source policies: natural language (i.e., “plain English”) expressions of
statutes, regulations, and other laws that govern the operation of government and
private agencies and organizations in the context of information sharing.

The access control policies covered in this guide use the attribute-based access

control (ABAC) model, in which access control rules are specified using attributes of
entities, resources, actions, and environmental conditions. In ABAC, an attribute is a
quality or feature regarded as an inherent part of somebody or something for access
control purposes. For example, there may exist a “citizenship” attribute for users of
a system and access to resources may be restricted to users who are citizens of a
particular nation.

As stated in the Global Privacy and Civil Liberties Policy Development Guide, the
term privacy refers to individuals’ interests in preventing the inappropriate
collection, use, and release of personally identifiable information (PII). PII is defined
as “one or more pieces of information that, when considered together or when
considered in the context of how it is presented or how it is gathered, are sufficient
to specify a unique individual”8. These pieces of information can include personal
characteristics, a unique set of numbers or characters assigned to a specific
individual, descriptions of events or points in time, and descriptions of locations or
places.

A privacy policy is a set of rules that limit the collection, release, or processing of PII
to only those entities that have a legitimate, authorized purpose. The privacy policy
concept is a subset of the concept of access control policy (i.e., an access control
policy limits access to information in general), and we can therefore use the same
tools and frameworks to manage and enforce both types of policies.

1.3.2 Global Reference Architecture and Global Privacy Policy Technical Framework

8 See http://www.it.ojp.gov/privacy.

 4

The Global Reference Architecture (GRA) is a service-oriented reference
architecture for information sharing across geo-political boundaries. The GRA
adheres to the principles of service-oriented architecture (SOA) and provides
guidance to implementers on how to develop information sharing solutions and
applications based on loosely coupled services that are implemented using standard
technologies.

The Global Privacy Policy Technical Framework (GPPTF) document explores
various approaches and alternatives to resolving technical and interoperability
challenges in automating privacy policy enforcement within and between
information-sharing enterprises. It defines a high-level architecture for
implementing and enforcing privacy policies, and it also provides guidance on
authoring electronic privacy policy statements based on applicable source policies.

The GPPTF advocates the implementation of privacy policy statements by using
identity credentials, resource content metadata, action verbs, and environmental

conditions to express which access requests are to be allowed. It also accommodates
the implementation of obligations: actions that the user or information sharing
service must perform to be in compliance with the policy.

The GPPTF uses externalized policy services that ensure that electronic information
access requests for information protected by a privacy policy are authenticated,
authorized, and audited before access is granted. These policy services rely on two
logical components of the framework called a Policy Decision Point (PDP) and a
Policy Enforcement Point (PEP). The PDP evaluates each access request against a
policy, and provides a decision on whether to grant access. The PEP intercepts each
access request, retrieves an access decision on the request from the PDP, enforces
the decision, and fulfills any policy obligations that apply to the decision. Figure 1
depicts the Privacy Policy Technical Framework.

 5

Figure 1: Privacy Policy Technical Framework

The framework presented in this Implementation Guide conforms to the GPPTF.

1.3.3 eXtensible Access Control Markup Language

The eXtensible Access Control Markup Language (XACML)9 is an XML-based
industry standard that includes: (1) a language for expressing attribute-based
access control policies; (2) a normative specification for the evaluation of an access
request against a policy; and (3) message formats for expressing access requests
and access control decisions.

The basic building blocks of XACML policies and access requests are attributes. In
XACML, an attribute is a name-value pair that expresses a characteristic of a subject
(a user or entity attempting to access a resource), a resource (a sensitive data item
or service protected by an access control system), an action (the type of operation to
be performed on a resource by a subject), or the system environment (conditions
external to the system that affect access control decisions). XACML also supports the
specification of policy obligations, which may be attached to specific XACML policy
statements.

9 See http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml for more information on XACML.

 6

Although XACML provides a standard for expressing attributes, it does not provide
any domain specific dictionary of attributes. Defining domain specific attributes and
values is a task left to each community of interest. For example, in the justice
community, the Global Federated Identity and Privilege Management (GFIPM)
metadata standard defines many relevant characteristics and values. Other
communities – human services, education, health care, etc. – are also developing
metadata standards that will assist in enforcing their source policies.

1.3.4 Global Federated Identity and Privilege Management (GFIPM)

The Global Federated Identity and Privilege Management (GFIPM) program
addresses the security requirements for the foundation of operational inter-
enterprise justice federations. The conceptual foundation of GFIPM is the idea of
federated identity and privilege management (FIPM), which provides the ability to
separate the management of user identities and privileges from the management of
the systems and applications in which those identities and privileges are used.
Within a federation, identity providers (IDPs) manage user identities and service
providers (SPs) manage applications and other information resources. Each system
or application in a federation typically has its own set of business requirements and
access control policies, and FIPM provides a cost-effective framework that enables
these systems to be made available to federated users while still respecting their
native requirements.

At the core of the GFIPM concept is the idea of collecting information attributes
about users and sharing them with systems and applications in a trusted manner.
These attributes serve as a framework for supporting various value-added features,
including dynamic provisioning of local user accounts within applications, and
federated authorization, in which an application can make access control decisions
for users based on the attribute values provided during the attribute sharing
process. In GFIPM, attributes capturing this information can be used to convey
important facts about a user to the target application, thereby enabling the
application to decide whether to permit or deny access without the need for manual
intervention by a local security administrator.

One of the technical work products created through the GFIPM program is the
GFIPM Metadata Specification10, which expresses precise syntax and semantics for
exchanging attribute data about users, system entities, information resources,
information-sharing actions, and environmental conditions within an information-
sharing federation. The GFIPM Metadata Specification provides a rich set of
attributes with which to express attribute-based access control policies, and is the
primary source of attributes for the policies discussed in this guide.

10 See http://gfipm.net/standards/metadata/2.0/index.html for more information about the GFIPM Metadata
Specification.

 7

The GFIPM Web Services System-to-System Profile11 is a normative technical
document containing a set of Service Interaction Profiles (SIPs) that enable secure,
interoperable, standards-based SOAP web services communication within a GFIPM
federation. It conforms to the GRA and leverages other GFIPM core normative
standards, including the GFIPM Metadata Specification and the GFIPM
Cryptographic Trust Model12, to further promote the GFIPM goals of secure,
interoperable information sharing across trust domains at low-cost. The sample
application that supplements this Implementation Guide conforms to one of the SIPs
specified in the GFIPM Web Services System-to-System Profile.

1.3.5 National Information Exchange Model

The National Information Exchange Model (NIEM)13 is a set of XML-based data
objects that can be used to implement standards-based information exchanges.
NIEM defines precise syntax and semantics, to enable accurate machine
interpretation and processing of complex XML documents across many information-
sharing domains. It is the predominant data model used for information exchange
within the U.S. justice community. A NIEM Information Exchange Package
Documentation (IEPD)14 provides a mechanism for normatively specifying a NIEM-
conformant set of data structures and messages that can be used for specific data
exchanges. NIEM IEPDs effectively provide a standard interface between systems at
the data payload level.

The NIEM community is currently investigating the addition of domain specific
metadata that could supply some data resource attributes for XACML rules.

1.3.6 Illustration and Summary

In a typical justice use case, sworn law enforcement officers are appropriately
permitted to review personally identifiable information in criminal intelligence
databases for the purpose of criminal investigations. Table 1 shows how the
components in the GPPTF map to XACML terminology and to example attribute
values that would be relevant to a source policy related to criminal intelligence
information exchange.

11 See http://gfipm.net/standards.html for more information about the GFIPM Web Services System-to-System Profile.
12 See http://it.ojp.gov/docdownloader.aspx?ddid=1338 for more information about the GFIPM Cryptographic Trust
Fabric.
13 See https://www.niem.gov/ for more information on NIEM.
14 See http://reference.niem.gov/niem/specification/model-package-description/1.0/model-package-description-1.0.pdf
for the Model Package Description Specification which contains the specification for IEPDs.

 8

GPPTF Component XACML Terminology Example Attribute Values

Identity Credentials Subject Attributes Sworn Law Enforcement Officer

Indicator15

Content Metadata Resource Attributes Criminal Intelligence Data

Indicator16

Action (Verbs) Action Attributes Action Type 17(Read, Delete, etc.)

Environmental

Conditions

Environment Attributes Local Weather Conditions18;

Homeland Security Threat Level19

Obligations Obligations The Data Requestor must not

further disseminate the requested

data; The Data Requestor must

delete the requested data within

30 days.
Table 1: Mapping from GPPTF Terms to XACML Terms to GFIPM Metadata

The examples for XACML subject, resource, action, and environment attributes are
from the GFIPM Metadata Specification. The GFIPM Metadata Specification does not
include obligation metadata; however, the Global Information Sharing Standards
Toolkit (GISST) Obligations Task Team is currently working to create standards for
defining and handling obligations.

1.4 How to Use This Document

This document is in part a reference manual on a XACML-based, enterprise access
control framework that conforms to the GPPTF, and in part a how-to guide on
implementing a subset of that framework. Section 2 of this document describes the
full XACML-based enterprise access control framework in detail. Section 3 is the
step-by-step implementation tutorial. The tutorial covers three major policy
implementation objectives:

1. Creating XACML policies from source policies;
2. Implementing and configuring various software components within the

enterprise access control framework; and
3. Integrating the framework with a sample information sharing application

that is available for download by the reader.

Through a series of “lessons”, the tutorial guides the reader through a step-by-step
process to complete each of above three tasks on the sample application, to achieve
a working prototype. Section 4 provides a “gap analysis” between the prototype

15 See http://gfipm.net/standards/metadata/2.0/user/SwornLawEnforcementOfficerIndicator.html.
16 See http://gfipm.net/standards/metadata/2.0/resource/CriminalIntelligenceDataIndicator.html.
17 See http://gfipm.net/standards/metadata/2.0/action/ActionType.html.
18 See http://gfipm.net/standards/metadata/2.0/environment/LocalWeatherConditions.html.
19 See http://gfipm.net/standards/metadata/2.0/environment/HomelandSecurityThreatLevel.html.

 9

developed in Section 3 and the full framework described in Section 2. It also
provides various recommendations for improving and extending the prototype to
better meet the requirements of the full enterprise framework. Section 0 provides
pointers to related literature for further reading.

 XACML Reference Architecture 2

This Section presents a canonical “XACML Reference Architecture” for managing
security and privacy policies within the enterprise. Section 2.1 describes the
prerequisite knowledge that the reader should have prior to reading the subsequent
sections. Section 2.2 provides an overview of the components and technologies that
comprise the reference architecture, and Section 2.3 provides a guided tour of the
architecture by describing how it supports several basic use cases.

2.1 Prerequisites

The description of the XACML Reference Architecture in the following sections
assumes that the reader already has a basic understanding of the following topics.

1. User Authentication and Identity Management
2. Authorization and Access Control Policy
3. Cryptographic Primitives (data confidentiality and data integrity)
4. eXtensible Markup Language (XML)

Specific components and technologies are briefly described when they are
introduced, and the brief descriptions in this document should provide enough
detail for the reader to develop a “big picture” understanding of the XACML
Reference Architecture. For each technology, links to supplementary information
resources are provided.

2.2 Major Architectural Components and Technologies

This section and its subsections provide a brief introduction to the components and
technologies used by the XACML Reference Architecture. Subsequent sections build
on this section to describe the use cases enabled by the architecture and the
integration points at which the architecture connects to its surrounding
environment.

2.2.1 Core Architectural Components

 10

Figure 2: XACML Reference Architecture

Figure 2 depicts the XACML Reference Architecture. XACML-related components are
shown in red, and application-specific components are green. The PEP is both green
and red as it performs both application-specific and XACML functionality. The blue
components are external to the reference architecture, and typically reside outside
the trust boundary of the organization that is implementing the architecture to
protect sensitive resources. The components within the dotted border comprise a
“Policy Services” infrastructure that enables XACML-based protection of many
applications and resources within an enterprise. A description of the core
architectural components follows.

1. Data Requestor – The Data Requestor is an entity that makes a request to
access a Data Resource. It may be a human user using a personal computing
device (e.g. a web browser), a system acting on behalf of a human user, or a
system acting on behalf of an entire organization. The Data Requestor may
come from within the same enterprise in which the Data Resource is located,
or it may come from another enterprise. Regardless of where the Data
Requestor resides, the XACML architecture must ensure that the request to
access the Data Resource does not succeed unless it is permitted by the
access control policy.

2. Data Resource – The Data Resource is any object or collection of objects

containing sensitive data, for which access is mediated by the XACML
architecture. Types of access on a Data Resource may include the standard
“CRUD” operations20 on a single object, as well as searching or querying
across a collection of multiple objects.

20 The term “CRUD” – create, read, update, and delete – describes the four basic functions that can be performed on
any persistent data object.

 11

3. Policy Enforcement Point (PEP) – In a XACML architecture, the PEP acts as
the “front door” to the system, from the perspective of the Data Requestor,
and mediates access to the Data Resource. The PEP typically communicates
with a Policy Decision Point (PDP), which renders access control decisions.
The PEP enforces the PDP’s decisions, permitting or denying access to the
Data Resource. All communications between the PEP and PDP take the form
of XACML requests and responses.

4. Policy Decision Point (PDP) – As described above, the PDP communicates

with the PEP and makes access control decisions that the PEP subsequently
enforces. The PDP receives access control requests in the form of XACML
request messages, and renders access control decisions in the form of XACML
responses. To render each access control decision, the PDP consults an
access control policy that is specified using XACML and stored in a Policy
Repository. Note that a single PDP may support multiple PEPs.

5. Policy Repository – The Policy Repository is a database that stores XACML

policy rules and allows for efficient retrieval of the rules by the PDP at policy
evaluation time.

6. Policy Information Point (PIP) and Supplemental Attribute Authorities –

The PIP is an auxiliary service used by the PDP to retrieve the values of any
supplemental attributes needed by the PDP for policy evaluation. To retrieve
supplemental attribute data, the PIP may contact one or more Supplemental
Attribute Authorities, which may reside either inside or outside the
enterprise.

7. Obligation Handlers – The Obligation Handlers are a set of software

modules that can be invoked by the PEP to fulfill various policy obligations,
such as logging or notification. Obligations are described briefly in Section
1.3.3.

8. Policy Administration Point (PAP) – The PAP is an interface into the Policy

Repository, through which policy administrators can manage XACML
policies. Common management tasks include authoring, installing, updating,
and deleting policies.

2.2.2 Core and Related Technologies

Because it is concerned with protecting sensitive data resources from unauthorized
access, the XACML Reference Architecture relies on several fundamental security
technologies. These technologies are introduced and briefly described here, along
with pointers to information resources for more in-depth study of each technology.

1. eXtensible Access Control Markup Language (XACML) – XACML, which was
previously introduced in Section 1.3.3, provides a robust, XML-based

 12

standard language for expressing access control policies. It also provides a
processing model for evaluating specific access requests and rendering
decisions based on those policies. For more information about XACML, please
see http://www.oasis-open.org/committees/xacml/.

2. Security Assertion Markup Language (SAML) – SAML provides a set of

industry standard protocols and profiles for securely transmitting trusted
assertions about subjects. These assertions typically are made by one
organization and intended for use by another organization for the purpose of
making access control decisions. The design of SAML makes it ideal for use in
conjunction with XACML, because SAML provides a secure source of attribute
data about a Data Requestor, and XACML uses attributes about the Data
Requestor to render an access control decision. For more information about
SAML, please see http://saml.xml.org/.

3. SOAP Web Services (WS-*) – WS-* comprises a set of composable

technologies that build upon the SOAP and WSDL standards to implement an
XML-based, enterprise-grade protocol suite for a service-oriented
architecture. While the SOAP and WSDL standards define the basic format of
a message and the basic interface of a service, respectively, other
technologies in the WS-* suite provide various add-on features in an “a la
carte” fashion. These add-on features include message confidentiality and
integrity (via WS-Security), message reliability (via WS-ReliableMessaging),
addressing and routing (via WS-Addressing), session management (via WS-
SecureConversation), and many others. For more information about WS-*,
please see the following links.

a. SOAP: http://www.w3.org/TR/soap/
b. WSDL: http://www.w3.org/TR/wsdl
c. WS-Security: http://www.oasis-open.org/committees/wss/
d. WS-ReliableMessaging: https://en.wikipedia.org/wiki/WS-

ReliableMessaging
e. WS-Addressing: http://www.w3.org/Submission/ws-addressing/
f. WS-SecureConversation: https://en.wikipedia.org/wiki/WS-

SecureConversation
g. Other:

https://en.wikipedia.org/wiki/List_of_web_service_specifications

4. Transport Layer Security (TLS) – TLS is an industry standard protocol for
communicating securely using certificates within a public key infrastructure
(PKI). Formerly known as Secure Sockets Layer (SSL), TLS is used by most
web sites and applications that provide secure sessions. For more
information about TLS, please see
https://en.wikipedia.org/wiki/Transport_Layer_Security.

 13

5. Public Key Infrastructure (PKI) – A PKI is a centrally managed trust
infrastructure that uses public key cryptography to provide a framework
within which secure point-to-point communications can be performed. For
more information about PKI, please see
https://en.wikipedia.org/wiki/Public_key_infrastructure.

2.3 Use Cases and Integration Points

This section builds upon Section 2.2 by describing the basic use cases that the
XACML Reference Architecture must support. The two fundamental use cases are as
follows.

1. Requestor Accesses Sensitive Resource
2. Administrator Creates Access Control Policy

In the following subsections, each use case is further subdivided into steps that
illustrate the role played by each component of the reference architecture to
support that use case. Also, each step corresponds to one or more “integration
points” at which the components of the reference architecture communicate with
each other. Important details about each integration point are discussed in the
context of each step for each use case.

A recurring theme throughout each use case, and each step within each use case, is
security and trust. Enterprises rely on this architecture to protect their sensitive
resources by faithfully implementing their access control and privacy policy rules. It
is therefore imperative that each component in the architecture operates and
communicates with other components in accordance with basic best practices of
computer security. Instead of repeating this common theme at each step, we
describe here the basic security requirements that the participating components
must meet, as well as the potential consequences of not meeting those
requirements.

During each step, it is critical that the XACML architecture components establish
mutual trust via a secure communication channel (e.g. TLS with mutual
client/server authentication), to avoid eavesdropping as well as various
communication-channel attacks (e.g. “man-in-the-middle” attacks, replay attacks,
etc.) The requirement for a secure channel between communicating parties is
always an important concern when devices communicate via a network.

2.3.1 Requestor Accesses Sensitive Resource

The most common “run-time” use case is when a person or system entity attempts
to access a sensitive resource. The reference architecture must perform a series of
steps to respond to the request in accordance with the access control policy that is
in place to protect the resource.

 14

Step 1: The Requestor connects to the PEP and makes a request to access a

sensitive resource.

Figure 3 depicts the components that participate in this step.

Figure 3: Components Involved in Step 1 (Access Request to PEP)

Requirements:

A. Secure Communication Channel between Requestor and PEP

B. Trusted Requestor Attributes – The Requestor must present the PEP with a set

of facts, or attributes, about its identity and credentials. The PEP must not only
understand the semantic meaning of these attributes, but also trust that the
attribute values are accurate. Note that the Requestor may come from within the
same enterprise, or from another enterprise (e.g. another agency). Note also that
the Requestor may be a user, a system acting on behalf of a user, or a system
acting on behalf of an entire agency. 21

C. Common Interface – The interface used between the Requestor and the PEP is

outside the scope of the XACML Reference Architecture. The data and messages
transferred over this common interface can be complex, structured objects such
as IEPDs. The PEP may need to translate these data structures into a data model
that can be used within XACML requests. This common interface is often based

21 The challenge of providing the PDP with well-defined attributes about the Requestor, in a trusted manner, is a major
undertaking, particularly when the Requestor comes from another agency. The GFIPM program has developed a robust
solution to this problem. We recommend that implementers use the GFIPM solution, if possible, rather than invent their
own solution to this problem. See http://gfipm.net/ for more information about GFIPM.

 15

on the SOAP Web Services (WS-*) family of standards, but it can also be based on
other technologies, such as REST web services or traditional client-server HTTP
communications (e.g. web browser to web server).22

Step 2: The PEP formulates a XACML request and sends it to the PDP for

evaluation.

Figure 4 depicts the components that participate in this step.

Figure 4: Components Involved in Step 2 (Submission of XACML Request to PEP)

Requirements:

A. Secure Communication Channels between PEP and PDP, and between PEP

and Resource

B. Translation from Application Protocol to XACML – The PEP must formulate
a XACML request and populate the request with appropriate domain
attributes in the XACML format. The PEP can obtain these attributes from
three sources: (1) conversion of attributes retrieved from the Data Requestor
into the XACML format; (2) creation of action attributes based on the action
requested in Step 1; and (3) retrieval of resource attributes from the target
data resource. Also, if required by the installed XACML policies, the PEP may
need to include the content of the requested data in the XACML request.23

22 The GFIPM suite of solutions includes a SOAP Web Services framework.
23 For example, a XACML policy may need to know the identity of the subject of a requested record in order to make a
decision, and the policy may be written to extract that identity directly out of the data record.

 16

Step 3: The PDP retrieves the appropriate XACML policy from the Policy

Repository.

Figure 5 depicts the components that participate in this step.

Figure 5: Components Involved in Step 3 (Loading XACML Policy into PDP)

Requirements:

A. Proper Configuration of the PDP with All Applicable Policies – All rules
and policies that are applicable to the application must be properly
aggregated into and loaded into the PDP, so the PDP can properly respond to
any request from the PEP within the application.

Step 4: The PDP determines whether it must retrieve any supplemental

attributes24 before it can evaluate the XACML request, and retrieves those

attributes via the PIP if necessary.

Figure 6 depicts the components that participate in this step.

24 One example of a potential supplemental attribute is whether there is a current state of emergency.

 17

Figure 6: Components Involved in Step 4 (Retrieval of Supplemental Attributes)

Requirements:

A. Secure Communication channels between PDP and PIP, and between PIP

and each Supplemental Attribute Authority

B. Implementation of an Accurate and Efficient Attribute Retrieval

Algorithm – The PIP must implement an accurate and efficient attribute
retrieval algorithm, so it can determine which Supplemental Attribute
Authority to contact for any given attribute, and dispatch the attribute
request appropriately. This algorithm must ensure that the attribute
retrieved pertains to the correct entity. (E.g. if multiple users named John
Smith exist within the enterprise and its partner agencies, the algorithm
must ensure that any supplemental attributes pertain to the correct John
Smith.) Also, the algorithm must retrieve supplementary attributes
efficiently, as the entire architecture may be blocked awaiting a synchronous
response from the PIP.

Step 5: The PDP evaluates the request, produces a XACML response, and sends

the response to the PEP.

Figure 7 depicts the components that participate in this step.

 18

Figure 7: Components Involved in Step 5 (XACML Response to PEP)

Requirements:

A. A Secure Communication Transmission of the XACML Response to the PEP

Step 6: The PEP handles any obligations associated with the response from the

PDP.

Figure 8 depicts the components that participate in this step.

Figure 8: Components Involved in Step 6 (Obligation Handling)

 19

Requirements:

A. Secure Communications Channel between PEP and Obligation Handlers

B. Proper Entity Resolution for Entities Specified in Obligations – Some
obligations require that a message be transmitted to a specific entity (e.g. a
specific email address) to fulfill a requirement for notification (e.g.
notification of the resource owner). The Obligation Handler for that
obligation must be able to resolve the identity and location of that entity
accurately based on the context provided to it by the PEP. An example of such
an obligation is: “The owner of a data resource must be notified of every
access to that resource”.

C. Processing Model for Handling “Out-of-Band” Obligations – In the

standard XACML obligation-processing model, the PEP is the obligor25 for all
obligations; in other words, the PEP fulfills all obligations. However, there
exist other classes of obligations for which an entity other than the PEP is the
obligor; these are called “out-of-band” obligations. An example of such an
obligation is: “The data requestor must not further disseminate the data”. In
this example, the data requestor is the obligor. Proper handling of these out-
of-band obligations requires the development and implementation of an
obligation-processing model that is deemed acceptable by the appropriate
policy authorities. The Global Federated Identity and Technical Privacy Task
Team26 is developing a standardized syntax and processing model for
various types of policy obligations, including out-of-band obligations.

Step 7: The PEP performs the action requested by the Requestor, if authorized

by the PDP, and responds to the Requestor.

Figure 9 depicts the components that participate in this step.

25 “Obligor” is a legal term indicating the party obligated to fulfill an obligation.
26 The Global Federated Identity and Technical Privacy Task Team was created in early 2012 as part of an effort to
restructure and streamline the activities of the working groups within the Global Justice Information Sharing Initiative.
This task team has subsumed the work of both the GFIPM Delivery Team and the Global Obligations Task Team.
More information about the work of this and other Global task teams is available at http://www.globaljusticetools.net/.

 20

Figure 9: Components Involved in Step 7 (Response to the Requestor)

Requirements:

A. Resource-Level Response Processing – The PEP must understand and be
capable of handling all the resource-level details for any action that the
Requestor may request and any policy decision that the PDP may provide in
response to that request.

B. Secure Communication Transmission of the PEP’s Response to the

Requestor

2.3.2 Administrator Manages Access Control Policy

Unlike the previous use case, which describes how the reference architecture
handles a request for access to sensitive data, this use case describes how the
architecture supports the management of access control policies. This use case
occurs on a relatively infrequent basis compared to the previous use case.

Step 1: The Policy Administrator defines a new attribute dictionary or updates

the existing attribute dictionary as needed.

This step is not illustrated.

Requirements:

A. Attribute Dictionary with Appropriate Terms – The Policy Administrator
can use an existing attribute dictionary, such as the GFIPM Metadata

 21

Specification, if appropriate, or create a new dictionary with custom
attributes or obligations. The Administrator may also extend an existing
dictionary with new custom attributes if necessary. Each new attribute
dictionary entry should, at a minimum, specify the name of the attribute and
the range of acceptable values for that attribute. Other useful information to
specify includes semantic or contextual definitions and the rationale for why
the attribute exists. Regardless of the specific attributes in the dictionary, it is
important that all providers of attributes (e.g. Data Requestor, Supplemental
Attribute Authorities, etc.) understand the syntactic and semantic details of
the attributes that they are expected to provide. Consumers of attributes
(PDP and PEP) must also understand the attributes.

Step 2: The Policy Administrator creates, updates, or deletes a XACML policy.

This step is not illustrated.

Requirements:

A. Secure Communication Channel between PAP and Policy Repository

B. Policy Authoring Tool – The use of a policy authoring tool with basic XACML
editing and syntax checking capabilities can ease the burden on Policy
Administrators authoring XACML policies. See Section 5 for references to
several commercial and open source XACML authoring tools.

C. Identification of All Applicable Source Policies – In the case of creating or

updating XACML policies, the Policy Administrator must identify all “Plain
English” source policies that govern access to the resource, from federal laws
to local rules of operation within the enterprise, to ensure that the XACML
policy developed for the resource is in full compliance with all applicable
rules, regulations, and laws.

D. Translation of All Applicable Source Policies into XACML – When creating

or updating XACML policies, the Policy Administrator must create
appropriate XACML statements that faithfully represent the applicable
source policies. Some of the source policies may have already been translated
into XACML statements; the Policy Administrator may be able to reuse these
translations if they conform to the attribute dictionary defined in Step 1. In
some cases, the Administrator may need to interpret source policy
statements that are ambiguous, and translate them into XACML. It is
important that the author(s) or policy maker(s) of the source policies verify
that the final, translated XACML policy is a faithful representation of the
source policies.

 22

E. Discovery of Existing Policies – The PAP should allow the administrator to
search for and retrieve existing policies. This feature supports the updating
and deleting of policies.

Step 3: The Policy Administrator installs the XACML policy in the Policy

Repository.

Figure 10 depicts the components that participate in this step.

Figure 10: Components Involved in Step 3 (Policy Installation)

Requirements:

A. Secure Communication Channel between PAP and Policy Repository

B. Submission of the XACML Policy to the Policy Repository – The Policy
Administrator must submit the XACML policy to the Policy Repository, to
expose the policy to the PDP.

C. Proper Configuration of Policy Services Components – The Policy

Administrator must ensure that all of the Policy Services components are
configured properly to support the newly installed XACML policy and the
attribute dictionary that it uses. The following configuration steps may be
required whenever the XACML policy changes.

a. Configure the PEP to use attributes that conform to the attribute

dictionary.
b. Configure the PIP to properly retrieve all required supplemental

attributes.

 23

c. Configure the Obligation Handlers to properly handle all obligations.

 Step-by-Step Sample Implementation Tutorial 3

This Section provides detailed, step-by-step instructions for setting up a sample
application with XACML access control policies that are evaluated at runtime using a
XACML engine. The content in this Section is organized into Groups of Lessons.
Some Lessons include “Challenges”- tasks we ask the reader to complete
independently for the purpose of confirming and enhancing their comprehension of
the material. The reader will need an XML editor to complete these challenges.
Solutions are provided for each Challenge. Accompanying downloads are provided
to assist the implementer, including sample solutions for each step of the
implementation process.

Notation

XML elements, for XACML and data files, are written as they appear in XML
documents, and are indicated in boldface text. For example: <Policy>.

XML attributes, for XACML and data files, are written as they appear in XML
documents, and are indicated in boldface text. For example: PolicyId.

Values of XACML and data elements appear in double quotes. For example: “Permit”.

We introduce some terms to serve as labels for certain groups of policy elements;
these terms are used to enable discussions about groups of elements as a whole.
These terms appear in italics. For example: class.

We use labels to refer to files, directories, and data items that exist in the
accompanying virtual machine. These labels are used in the style of Linux
environment variables- they begin with a dollar sign ($) which is followed by the
label in all caps. For example: the label $POLICY_GUIDE refers to the following path
on the virtual machine, “/home/guide/policy-guide”. The complete list of labels
used in this Guide and their definitions are in Appendix B: Labels.

3.1 The Syntax and Evaluation Process of XACML

This Lesson Group covers the XACML syntax and the policy evaluation process. The
“$POLICY_GUIDE/xacml_lessons/” directory contains files that accompany this
Lesson Group. Files associated with a particular Lesson are located a directory that
has the same name as the Lesson number. For example, the files for Lesson 3.1.1 are
in the “$POLICY_GUIDE/xacml_lessons/3.1.1/” directory.

 24

3.1.1 Policy Authoring and Evaluation Basics

Goals:

1. Understand the basic structure of a XACML policy.
2. Understand the basic structure of a XACML request.
3. Understand how to evaluate a policy against a XACML request with the

SunXACML library.
4. Understand the basic structure of a XACML response.

Summary:

In this Lesson, you will inspect simple XACML policies and XACML requests to learn
the basic syntax of XACML. You will then use the SunXACML library to evaluate a
policy against a request and learn how to read the XACML result. Also, you will be
challenged with making edits to a request to achieve certain results.

Steps:

3.1.1.1 Inspect Permit-Policy.xml

Line 1 contains the standard XML header tag. Line 2 has an XML comment that
contains copyright information (XML comments have no effect on XACML files). The
<Policy> opening tag is on Lines 3 – 5. A XACML policy has either a top-level
<Policy> element or a top-level <PolicySet> element27.

Line 3 contains the OASIS XML namespace for the XACML policy language. We
strongly recommend always including this namespace. Not including the namespace
may make it more difficult, or even impossible, for your policies to be processed by
some automated tools28.

Line 4 contains the policy Identifier (PolicyId).

Line 5 contains the rule-combining algorithm (RuleCombiningAlgId). Rule
combining algorithms govern how multiple rules are aggregated within a single
policy and are covered in Lesson 3.1.6. The rule combining algorithm used here is
“deny-overrides”. No rule combining algorithm will have any effect on this <Policy>
since this <Policy> contains only one <Rule>.

Lines 7 – 10 contain the <Description> of the <Policy>. <Policy>, <PolicySet>,
and <Rule> elements can contain <Description> elements. The <Description> is
for informational purposes only and has no effect on policy semantics.

27 The <PolicySet> element is covered in Lesson 3.1.7.
28 There are automated tools available to assist with authoring, testing, and analyzing XACML Policies.

 25

The <Target> of the <Policy> is on Lines 12 - 22. A <Target> is a collection of
attribute predicates organized into classes. In general, a predicate is defined as a
statement that can be shown to be true or false, and in XACML, predicates are
statements on attributes.

There are four classes of attributes in XACML: <Subjects>, <Resources>,
<Actions>, and <Environments>. A class can contain one or more instances. The
<Resources> class can contain one or more <Resource> instances; and so on. An
instance can contain one or more match-predicates. The match-predicates in
<Action> instances are <ActionMatch> elements; the match-predicates in
<Environment> instances are <EnvironmentMatch> elements; and so on. The
<Target> of this <Policy> contains match-predicates for only the <Subjects> class.

Lines 13 – 21 contain the <Subjects> class which contains a single <Subject>
instance (Lines 14 – 20). Lines 15 – 19 contain the single <SubjectMatch> match-

predicate in the single <Subject> instance. A match-predicate consists of three
components: a MatchId, an <AttributeValue>, and an attribute-reference. A
MatchId is a reference to a XACML function that returns a Boolean value29. An
<AttributeValue> contains a DataType and a literal value. Attribute-references
refer to attributes in XACML Requests. An attribute-reference can be one of
attribute-designator or <AttributeSelector>30. Attribute-designators in the
<Subjects> class are <SubjectAttributeDesignator> elements; attribute-

designators in the <Resources> class are <ResourceAttributeDesignator>
elements; and so on.

In the <SubjectMatch> on Lines 15 – 19, the MatchId (Line 15) is specified to be
“string-equal”. The <AttributeValue> (Line 16) has a DataType of “string” and a
value of “Top Secret”. The <SubjectAttributeDesignator> refers to the
“SecurityClearanceLevelCode” GFIPM attribute. This predicate can be read: “the
GFIPM Security Clearance Level Code of the Subject equals ‘Top Secret’.” A request
by a user that has a Top Secret clearance will cause this predicate to be true.

Let’s look at this predicate in more detail. There are three parts: (1) “the GFIPM
Security Clearance Level Code of the Subject”; (2) “equals”; and (3) “Top Secret”. The
first part is an attribute, the second part is an operation that will result in true or
false (Boolean operation), and the third part is a literal value. In general, a XACML
predicate is a Boolean operation on two attribute-expressions31. We define an
attribute-expression as being a literal value, an attribute, or a manipulation32 of an
attribute.

29 Only functions that take two primitive values (as opposed to collections of values, known as bags) as
input are able to be used as a MatchId. A complete list of standard XACML functions that can be used as a
MatchId is in Section 7.5 of the XACML 2.0 Specification.
30 <AttributeSelector> elements are covered in Section 3.1.4.
31 XACML predicates do not always have to be in this form, but the authors have never come across a predicate that
could not be normalized into this form.
32 Manipulations on attributes are covered in Lesson 3.1.5.

 26

In XACML, functions are used to build predicates. There are functions for common
data operators, such as “equals” and “add”, and more. A function will be specific to a
certain DataType (e.g., “string-equals” and “integer-equals”). There are functions to
do operations on strings, numeric values, Boolean values, date-time values, and
more. A complete list of standard XACML functions is in Appendix A.3 of the XACML
2.0 Specification.

The <Target> of the <Policy> will be applicable to requests for which the
“SecurityClearanceLevelCode” Subject attribute has a value of “Top Secret”. When
the <Target> of a <Policy> is applicable to a Request, then the <Rule> elements of
that <Policy> are evaluated against the request.

A XACML rule, represented by a <Rule> element, is the articulation of an
authorization. A rule contains an Effect, a decision of “Permit” or “Deny”, and
collection of match-predicates in a <Target>33. The match-predicates represent the
authorized privileges. The Effect determines whether the rule is a positive or
negative authorization.

Every <Policy>, <Rule>, and <PolicySet> element is required to have exactly one
<Target> element34, however, the <Target> may be empty. An empty <Target>
matches every request. Also, every <Policy> element must specify exactly one rule-
combining algorithm.

Lines 24 – 32 contain the single <Rule> of the <Policy>. The Effect of this Rule is
“Permit”, and the Rule Identifier (RuleId) is “Rule-1” (Line 24). An Effect can either
be “Permit” or “Deny”. Lines 26 – 28 contain the <Description> of the <Rule>. The
<Rule> has an empty <Target> (Line 30), which means that this <Rule> is
applicable to all requests.

When a <Rule> is applicable to a request, then the <Rule> evaluates to its Effect.
Therefore, this <Policy> will evaluate to “Permit” for requests from Subjects that
have a GFIPM Security Clearance Level Code of “Top Secret”, regardless of any
Resource, Action, and Environment attributes that may exist in the requests.

A XACML policy can evaluate to one of four decisions:

• “Permit” – the requested action is to be allowed.

• “Deny” – the requested action is to be prohibited.

• “NotApplicable” – the policy doesn’t apply to the request.

• “Indeterminate” – there was an error during the evaluation.

33 A <Rule> can optionally contain a <Condition>. <Condition> elements are covered in Lesson 3.1.5.
34 Every <PolicySet> element is required to have exactly one <Target> element as well.

 27

3.1.1.2 Inspect Request-1.xml

A XACML request is the articulation of one or more Subjects (<Subject> elements)
seeking to perform a single Action (<Action> element) on one or more Resources
(<Resource> elements) in a single Environment (<Environment> element). Each
<Subject>, <Action>, <Resource>, and <Environment> element contains a set of
zero or more <Attribute> elements. Each <Attribute> contains an AttributeId (an
attribute Identifier), a DataType, and one or more <AttributeValue> elements.
Each <AttributeValue> contains a single, literal value that must match the
DataType.

This request contains Subject (Lines 5 – 10), Resource (Lines 12 – 17), and Action
(Lines 19 – 24) attributes. There are no Environment attributes as shown on Line
26. This request can be read: “A Subject with a GFIPM Security Clearance Level Code
of ‘Top Secret’ is attempting ‘write’ access to ‘Resource-1’.”

The AttributeId of the single Resource <Attribute> is the standard XACML
“resource-id” Identifier. Every request must contain at least one <Attribute> that
has the standard XACML “resource-id” Identifier in at least one <Resource>.

3.1.1.3 Evaluate Permit-Policy against Request-1

First, let’s manually determine what the result should be. The PDP will first
determine the applicability of the policy’s <Target> to the request. To do this, the
PDP will evaluate the match-predicates of the <Target> using the attributes of the
request.

The match-predicate in Permit-Policy contains an attribute-designator. An attribute-

designator is a reference to a particular <Attribute> in a request. When evaluating
an attribute-designator against a request, the PDP will attempt to locate the
<Attribute> in the request that has the following properties35:

• The <Attribute> must be in the same class as the attribute-designator.

• The <Attribute> must have the same AttributeId and DataType as the
attribute-designator.

If a matching <Attribute> exists in the request, then the PDP will retrieve the values
of all the <AttributeValue> elements of the <Attribute> (recall that an
<Attribute> can have multiple <AttributeValue> elements) as a bag36 of values.
The PDP then invokes the function specified by the MatchId of the match-predicate
one time for each value of the bag. For each invocation, the PDP will pass in the
literal value of the <AttributeValue> of the match-predicate as the first parameter,
and a value of the bag as the second parameter. If at least one invocation returns

35 An attribute-designator can also optionally specify an Issuer. If an Issuer is specified, then a request
<Attribute> must have the same Issuer value in order to match the attribute-designator.
36 A bag is a mathematical set in which a value can appear more than once.

 28

true, then the match-predicate evaluates to true. If all invocations return false, then
the match-predicate evaluates to false37. If no matching <Attribute> is found in the
request, then the PDP will retrieve an empty bag and the match-predicate will
evaluate to false38.

The Subject attribute of Request-1 (Lines 5 – 10) will cause the match-predicate of
Permit-Policy on Lines 15 – 19 to be true. The Resource attribute of Request-1
(Lines 12 - 17) will be ignored by Permit-Policy since the Policy is silent on
Resource attributes. The Action attribute of Request-1 (Lines 19 – 24) will be
ignored by Permit-Policy since the Policy is silent on Action attributes. All the
predicates of the Target of Permit-Policy will match the request; therefore the single
<Rule> of Permit-Policy should be evaluated. Since the <Rule> has an empty
<Target>, it will evaluate to its Effect (“Permit”). Since this is the only <Rule> in
the <Policy>, the <Policy> should evaluate to “Permit”.

Now, execute SunXACML’s SimplePDP39 with Request-1.xml and Permit-Policy.xml,
and output the result to Request-1_Permit-Policy_Response.xml and inspect the
result.

Note that SimplePDP does not output the XML declaration tag or XML namespace
information in XACML responses.

A XACML response is contained in a <Response> element (Lines 1 – 8). There is one
<Result> element (Lines 2 – 7) that corresponds to the Resource Identifier for
which access was requested (“Resource-1”).

The <Decision> is on Line 3 and is “Permit”.

Lines 4 – 6 contain the <Status> of the result and Line 5 contains the
<StatusCode>. Returning a <Status> is an optional feature of XACML. If a PDP
returns a <Decision> of “Permit” or “Deny”, then the <Status> should have a value
of “ok” as it does on Line 5. We will not further investigate the status feature in this
Guide.

3.1.1.4 Inspect Deny-Policy.xml

This policy consists of a top-level <Policy> element. The <Target> of the <Policy>
is very similar to the <Target> of Permit-Policy. The <Target> of this policy is
applicable to Subjects that have a GFIPM Security Clearance Level Code of
“Confidential”.

37 See the XACML Reference Tables in Appendix C for complete details.
38 There is an optional MustBePresent property of attribute-references that changes this behavior. If the
MustBePresent property is true and no matching <Attribute> is found, then the match-predicate will
evaluate to “Indeterminate”. See the XACML Reference Tables in Appendix C for complete details.
39 Follow the instructions in Appendix A: Common Tasks (Executing SimplePDP).

 29

The <Policy> contains a single <Rule>, “Rule-1”, which has an Effect of “Deny”. The
<Target> of “Rule-1” is applicable to requests to perform the “write” Action. This
<Rule> (and thus the <Policy>), when evaluated against requests that are not
performing the “write” Action, will evaluate to “NotApplicable”.

3.1.1.5 Evaluate Deny-Policy against Request-1

First, let’s manually determine what the result should be. The lone <SubjectMatch>
of the <Target> of Deny-Policy (Lines 15 – 19) should match the lone Subject
<Attribute> of Request-1 (Lines 6 – 9). However, the <SubjectMatch> will evaluate
to false because the value of the Subject <Attribute> of Request-1 (“Top Secret”)
does not equal the <AttributeValue> of the <SubjectMatch> of Deny-Policy
(“Confidential”). Therefore, the <Target> of Deny-Policy will not match Request-1,
“Rule-1” will not be evaluated (even though it would have matched Request-1), and
Deny-Policy should evaluate to a decision of “NotApplicable”.

Now, execute SimplePDP with Deny-Policy.xml and Request-1.xml, and output the
results to Request-1_Deny-Policy_Response.xml and inspect the result. Confirm that
the <Decision> of the <Result> for “Resource-1” states “NotApplicable”.

3.1.1.6 Challenge: Create a request that will be applicable to Deny-Policy

Make a copy of the Request-1.xml file and name the copy “Request-2.xml”. Open
Request-2.xml. The value of the Subject <AttributeValue> on Line 8 should read
“Top Secret”. Change this value to a value that will make Request-2 cause Deny-
Policy to evaluate to “Deny”.

The solution to this Challenge is in Request-2-Solution.xml.

3.1.1.7 Evaluate Deny-Policy against Request-2

First, let’s manually determine what the result should be. The Subject <Attribute>
of Request-2 (Lines 6 – 9) should match the <SubjectMatch> of the <Target> of
Deny-Policy (Lines 15 – 19). The Resource <Attribute> of Request-2 (Lines 13 - 16)
should be ignored by the <Target> of Deny-Policy since the <Target> does not
specify the <Resources> class. The Action <Attribute> of Request-2 (Lines 20 - 23)
should be ignored by the <Target> of Deny-Policy since the <Target> does not
specify the <Actions> class. Therefore, Rule-1 of Deny-Policy should be evaluated
against Request-2.

The Subject <Attribute> of Request-2 (Lines 6 - 9) should be ignored by the
<Target> of Rule-1 since the <Target> does not specify the <Subjects> class. The

 30

Resource <Attribute> of Request-2 (Lines 13 - 16) should be ignored by the
<Target> of Rule-1 since the <Target> does not specify the <Resources> class. The
Action attribute of Request-2 (Lines 20 – 23) should match the <ActionMatch> of
the <Target> of Rule-1 (Lines 37 - 41). Therefore, Rule-1 should evaluate to its
Effect (“Deny”), and subsequently Deny-Policy should evaluate to “Deny”.

Now, execute SimplePDP with Deny-Policy.xml and Request-2.xml, and output the
results to Request-2_Deny-Policy_Response.xml. Confirm that the <Decision> for
“Resource-1” is “Deny”.

3.1.1.8 Evaluate Permit-Policy against Request-2

First, let’s manually determine what the result should be. The lone <SubjectMatch>
of the <Target> of Permit-Policy (Lines 15 – 19) should match the lone Subject
<Attribute> of Request-2 (Lines 6 – 9). However, the <SubjectMatch> will evaluate
to false because the value of the Subject <Attribute> of Request-2 (“Confidential”)
does not equal the <AttributeValue> of the <SubjectMatch> of Permit-Policy
(“Top Secret”). Therefore, the <Target> of Permit-Policy will not match Request-2,
“Rule-1” will not be evaluated (even though it would have matched Request-2), and
Permit-Policy should evaluate to a decision of “NotApplicable”.

Now, execute SimplePDP with Permit-Policy.xml and Request-2.xml, and output the
results to Request-2_Permit-Policy_Response.xml. Confirm that the <Decision> for
“Resource-1” states “NotApplicable”.

3.1.2 The “Attribute Value Spacing” Pitfall

Goals:

1. Understand what the Attribute Value Spacing Pitfall, and why it is
problematic40.

Summary:
In this Lesson, you will compare two policies that have a subtle difference in the
value of an <AttributeValue> element. You will evaluate both policies against the
same request and analyze the different results.

Steps:

3.1.2.1 Inspect Permit-Policy.xml and Request-1.xml

Confirm that this Permit-Policy and Request-1 are the same as the Permit-Policy and
Request-1 from Lesson 3.1.1.

40 You should be very diligent when authoring policies to avoid this problem. Also, it may be possible to construct an
XSLT stylesheet to ensure that this condition never occurs.

 31

3.1.2.2 Evaluate Permit-Policy against Request-1

Recall from Lesson 3.1.1 that the <Decision> should be “Permit”. Confirm that this
is the case.

3.1.2.3 Compare Permit-Policy with Permit-Policy-2

See if you notice the subtle difference. The closing tag of the <AttributeValue>
element in Permit-Policy-2 on Line 16 does not come immediately after the value
“Top Secret”. The MatchId of the <SubjectMatch> (Line 15) is “string-equal”;
during evaluation, this function will take into account the extra spaces after the
value “Top Secret”.

3.1.2.4 Evaluate Permit-Policy-2 against Request-1

Execute SimplePDP with Permit-Policy-2.xml and Request-1.xml, and output the
results to Request-1_Permit-Policy-2_Result.xml. Inspect Request-1_Permit-Policy-
2_Response.xml. Confirm that the <Decision> for “Resource-1” is “NotApplicable”. It
is “NotApplicable” because the value “Top Secret” in the <AttributeValue> in
Request-1 on Line 7 is not the same as “Top Secret” with extra spaces as stated in
Permit-Policy-2.

3.1.3 Multiple Match-Predicates per Instance, Multiple Instances per Class

Goals:

1. Understand the policy evaluation semantics for multiple match-predicates in
an instance.

2. Understand the policy evaluation semantics for multiple instances in a class.

Summary:

In this Lesson, you will analyze policies that have multiple match-predicates in an
instance and multiple instances in a class. You will learn the policy evaluation
semantics for both scenarios; multiple match-predicates in an instance are
conjunctive while multiple instances in a class are disjunctive. You will be challenged
to author requests that will achieve certain results.

Steps:

3.1.3.1 Inspect Multiple-Predicate-Policy.xml

 32

Open Multiple-Predicate-Policy.xml. Multiple-Predicate-Policy contains a <Target>
(Lines 12 - 27) with only the <Subjects> class specified (Lines 13 – 26). It contains a
single <Rule>, “Rule-1” (Lines 29 – 37), that has an empty <Target> (Line 35) and
an Effect of “Permit”.

The <Subjects> class of the policy <Target> contains a single <Subject> instance
(Lines 14 – 25). This instance contains two <SubjectMatch> match-predicate
elements; the first is on Lines 15 – 19, and the second is on Lines 20 – 24. The first
match-predicate can be read: “The GFIPM Security Clearance Level Code of the
Subject is ‘Top Secret’.” The second match-predicate can be read: “The Subject is a
Sworn Law Enforcement Officer.”
Note that the second match-predicate uses a MatchId of “boolean-equal”. This
Function compares two Boolean values for equality. When using the SunXACML
library, literal Boolean values (i.e., “true” and “false”) must be in lower case.

All match-predicates need to evaluate to true for the parent instance to match a
request (see the Table 17: Instance Evaluation Table for more details). In this policy,
requests for which the Subject is a Sworn Law Enforcement Officer with a Top
Secret Clearance will match the <Subject> instance. Since this is the only instance in
the policy, and the policy has a single rule, then this policy should evaluate to
“Permit” for Sworn Law Enforcement Officers who have a Top Secret Clearance
performing any action to any resource in any environment.

3.1.3.2 Inspect Multiple-Instance-Policy.xml

Open Multiple-Instance-Policy.xml. Multiple-Instance-Policy contains a <Target>
(Lines 12 - 29) with only the <Subjects> class specified (Lines 13 – 28). It contains a
single <Rule>, “Rule-1” (Lines 31 – 39), that has an empty <Target> (Line 37) and
an Effect of “Permit”.

The <Subjects> class of the policy <Target> contains two <Subject> instances. The
first is on Lines 14 – 20, and the second is on Lines 21 – 27. Each <Subject> instance
contains a single <SubjectMatch> match-predicate.

The <SubjectMatch> of the first <Subject> (Lines 15 – 20) also exists in Multiple-
Predicate-Policy. It can be read: “The GFIPM Security Clearance Level Code of the
Subject is ‘Top Secret’.”

The <SubjectMatch> match-predicate of the second <Subject> instance (Lines 22 –
26) also exists in Multiple-Predicate-Policy. It can be read: “The Subject is a Sworn
Law Enforcement Officer.”

For a class to match a request, at least one of its instances must match the request
(see Table 18 for more details). For this policy, the <Subjects> class will match
requests for which the Subject either has a Top Secret Clearance, or is a Sworn Law

 33

Enforcement Officer, or both. Since the <Subjects> class is the only class specified,
and there is only one rule, this policy will evaluate to “Permit” for requests that its
<Subjects> class matches.

3.1.3.3 Compare Multiple-Predicate-Policy to Multiple-Instance-Policy

These policies both include the same match-predicates. However, since Multiple-
Predicate-Policy organizes the match-predicates within the same instance, and
Multiple-Instance-Policy organizes the match-predicates in separate instances, the
semantics of these two policies are different (as described in Steps 3.1.3.1 and
3.1.3.2). Multiple-Predicate-Policy is more restrictive since both match-predicates
must evaluate to true for that policy to be applicable to a request. Also, Multiple-
Instance-Policy will be applicable to every request to which Multiple-Predicate-
Policy is applicable.

3.1.3.4 Challenge: Create Request-1

Create a new XML file called “Request-1.xml”. In this file, author a request that will
be applicable to Multiple-Predicate-Policy. Because of how the two policies are
written, this request should also be applicable to Multiple-Instance-Policy. The
request should include Subject attributes, and a “resource-id” Resource attribute.
For the “resource-id” attribute, use a value of “Resource-1”. You can leave the Action
and Environment sections empty.

A solution to this Challenge is in Request-1-Solution.xml.

3.1.3.5 Evaluate Multiple-Predicate-Policy against your Request-1

Confirm that the <Decision> for “Resource-1” is “Permit”.

3.1.3.6 Evaluate Multiple-Instance-Policy against your Request-1

Confirm that the <Decision> for “Resource-1” is “Permit”.

3.1.3.7 Challenge: Create Request-2

Create a new XML file called “Request-2.xml”. In this file, author a request that will
not be applicable to Multiple-Predicate-Policy, but will be applicable to Multiple-
Instance-Policy. The request should include Subject attributes, and a “resource-id”
Resource attribute. For the “resource-id” attribute, use a value of “Resource-1”. You
can leave the Action and Environment sections empty.

 34

A solution to this Challenge is in Request-2-Solution.xml.

3.1.3.8 Evaluate Multiple-Predicate-Policy against your Request-2

Confirm that the <Decision> for “Resource-1” is “NotApplicable”.

3.1.3.9 Evaluate Multiple-Instance-Policy against your Request-2

Confirm that the <Decision> for “Resource-1” is “Permit”.

3.1.4 Referencing Resource Content

Goals:

1. Understand how to use the <AttributeSelector> element.
2. Understand how a Policy can use the content of resources in the evaluation

process.

Summary:

This Lesson introduces the use of the <AttributeSelector> element. You will be
asked to inspect and analyze policies using this element, and make comparisons
with policies that only use attribute-designators. You will confirm the analysis by
evaluating the policies against requests. Finally, you will be challenged to edit a
policy and a request to achieve specific results.

Steps:

3.1.4.1 Inspect Permit-Policy.xml and Request-1.xml

Confirm that this Permit-Policy and Request-1 are the same as the Permit-Policy and
Request-1 from Lesson 3.1.1.

3.1.4.2 Evaluate Permit-Policy against Request-1

Recall from Lesson 3.1.1 that the <Decision> should be “Permit”. Confirm that this
is the case.

3.1.4.3 Inspect Selector-Policy.xml

 35

Selector-Policy is semantically the same as Permit-Policy, with two significant
syntactical differences. Recall from Lesson 3.1.1 that a match-predicate consist of
three parts:

• A MatchId

• An <AttributeValue>

• An attribute-reference which can be an attribute-designator or an
<AttributeSelector>

o The name of attribute-designator elements are dependent on which
class the attribute-designator is in. <Subjects> contain
<SubjectAttributeDesignator> elements and so on.

The <SubjectMatch> match-predicate of Selector-Policy uses an
<AttributeSelector> attribute-reference (Lines 18 – 19), while the <SubjectMatch>
of Permit-Policy uses an attribute-designator (<SubjectAttributeDesignator>)
attribute-reference (Lines 17 – 18). The particular <AttributeSelector> in Selector-
Policy causes the exact same semantic effect as the <SubjectAttributeDesignator>
in Permit-Policy: it causes the PDP, when evaluating the policy against a request, to
retrieve the values of all <AttributeValue> elements (as a bag of values) of the
GFIPM Security Clearance Level Code Subject attribute of the request.

An <AttributeSelector> contains a DataType and a RequestContextPath. The
value of a RequestContextPath must be an XPath expression into the request
context41. The PDP will retrieve the set of nodes42 referenced by the
RequestContextPath as a bag of values. If no nodes are found, then the PDP returns
an empty bag43.

Beware that XACML defines one XML namespace for policies and a separate
namespace for the XACML context. Since a RequestContextPath is an XPath
expressions into the request context, any policy that uses an <AttributeSelector>
must declare the XACML context namespace. This is done in Selector-Policy on Line
4; a prefix of “ctx” is used to represent the context namespace. On Line 19, the “ctx”
prefix is used in the XPath expression.

3.1.4.4 Evaluate Selector-Policy against Request-1

Confirm that the <Decision> for “Resource-1” is “Permit”.

3.1.4.5 Inspect ArrestRecord.xsd

41 The XACML “context” is the XML structures of requests and responses.
42 A “node” is a term used in the context of XPath that means a part of an XML document.
43 The optional MustBePresent property of attribute-references changes this behavior.

 36

This file is in the “$POLICY_GUIDE/arrest_record_simple/” directory. It contains an
XML Schema44 for an <ArrestRecord> element. We will use this schema to
represent a set of Arrest Records for which we want to protect access.

The schema defines an <ArrestRecord> element that contains seven sub-elements:

• <Id> - the identifier of the record.

• <SubjectId> - the identifier of the individual who was arrested.

• <Jurisdiction> - the jurisdiction in which the arrest occurred.

• <Date> - the date at which the arrest occurred.

• <ArrestingOfficerId> - the identifier of the arresting officer.

• <ArrestingOfficerAgencyName> - the name of the agency that employs the
arresting officer.

• <ArrestingOfficerEmailAddress> - the email address of the arresting
officer.

An arrest record articulates that an officer arrested some individual on a particular
date within a particular jurisdiction. Valid values for jurisdiction are defined by the
GFIPM Jurisdiction Code Set45.

3.1.4.6 Inspect Record-1.xml

Confirm that this XML document conforms to ArrestRecord.xsd46. Record-1 states
that Officer-1 arrested Subject-1 in Georgia on Valentine’s Day 2012.

3.1.4.7 Inspect Content-Request-1.xml

This request shows an example of how XML content can be included in a request.
The <ResourceContent> element (Lines 8 – 16) contains the content of the Record-
1 Arrest Record (Lines 9 – 15). Notice the declaration of the Arrest Record
namespace on Line 10 and the use of the “ar” prefix throughout the content of the
Arrest Record.

Policies must use an <AttributeSelector> to retrieve values from a
<ResourceContent> element in a request.

3.1.4.8 Inspect Content-Policy-1.xml

44 The IEPD schema used here is technically not a genuine IEPD; however, the schema is NIEM IEPD-conformant and
provides a close approximation of a genuine IEPD.
45 The GFIPM Jurisdiction code set is available at
http://gfipm.net/standards/metadata/2.0/codesets/GFIPMJurisdictionCode.html.
46 This can be done by using an XML Schema validator to validate Record-1.xml against ArrestRecord.xsd

 37

This policy will evaluate to “Permit” for requests that contain an Arrest Record with
a Jurisdiction value of “GA”.

The <Target> (Lines 16 – 27) contains a single <ResourceMatch> match-predicate
(Lines 19 – 24) that uses an <AttributeSelector> (Lines 21 – 23). The
RequestContextPath (Line 23) expression points to the value of the
<Jurisdiction> element in an <ArrestRecord>.

Notice the use of the “ar” namespace prefix in the XPath expression and the
declaration of the Arrest Record namespace on Line 5. When using the SunXACML
library, XPath expressions in RequestContextPath XML-attributes must be XML
namespace qualified.

This policy contains a single “Permit” <Rule> that has an empty <Target>.

3.1.4.9 Evaluate Content-Policy-1 against Content-Request-1

First, let’s manually determine what the result should be. If the single
<ResourceMatch> of the policy evaluates to true, then the policy should evaluate to
“Permit”, otherwise the policy should evaluate to “NotApplicable”.

The <ResourceMatch> will be true for requests that include an <ArrestRecord>
that has a <Jurisdiction> value of “GA”. Content-Request-1 has such an
<ArrestRecord>, therefore Content-Policy-1 should evaluate to “Permit”.

Now, execute SimplePDP with Content-Request-1.xml and Content-Policy-1.xml, and
output the results to Content-Request-1_Content-Policy-1_Response.xml. Confirm
that the <Decision> for “Resource-1” is “Permit”.

3.1.4.10 Challenge: Add match-predicates to Content-Policy-1

Create a copy of Content-Policy-1 and call the new file: “Content-Policy-2.xml”. Open
Content-Policy-2.xml. On Line 5, change the end of the PolicyId to read “Content-
Policy-2”.

In the existing <Resource> instance (Lines 18 – 25), create a new
<ResourceMatch> that articulates this predicate: “the Subject Id of the Arrest
Record equals ‘Subject-1’.”

Notice that the subject of the Arrest Record is handled in the <Resources> class
because it is a part of the resource content and is not the subject of the request.

Create the <Subjects> class (currently non-existent) in the <Target> of the policy,
and include one <Subject> instance. In this <Subject>, create a <SubjectMatch>

 38

that articulates this predicate: “The request Subject is a Sworn Law Enforcement
Officer.” Use the GFIPM Sworn Law Enforcement Officer Indicator attribute
identifier47.

A solution to this Challenge is in Content-Policy-2-Solution.xml.

3.1.4.11 Evaluate Content-Policy-2 against Content-Request-1

Evaluate your Content-Policy-2 against Content-Request-1. Confirm that the
<Decision> for “Resource-1” is “NotApplicable”. This should be because the
<SubjectMatch> you created in Content-Policy-2 should evaluate to false; Content-
Request-1 is silent on Subject attributes. Recall that all four classes must match a
request in order for the parent <Target> to match the request.

3.1.4.12 Challenge: Create a request that is applicable to Content-Policy-2

Create a copy of Content-Request-1 and call the new file: “Content-Request-2”. Edit
Content-Request-2 to make it applicable to Content-Policy-2.

A solution to this Challenge is in Content-Request-2-Solution.xml.

3.1.4.13 Evaluate Content-Policy-2 against Content-Request-2

Evaluate your Content-Policy-2 against Content-Request-2. Confirm that the
<Decision> for “Resource-1” is “Permit”.

3.1.5 Rule Conditions

Goals:

1. Understand the need for rule conditions.
2. Understand how rule conditions affect rule evaluation.
3. Understand how to properly author rule conditions.

Summary:

This Lesson introduces rule conditions. Through inspecting, analyzing, and
evaluating sample policies, you are led to understand the need for and semantics of
conditions. You will be challenged to author a rule that contains a condition.

47 Details on the GFIPM Sworn Law Enforcement Officer Indicator attribute are at
http://gfipm.net/standards/metadata/2.0/user/SwornLawEnforcementOfficerIndicator.html.

 39

Steps:

3.1.5.1 Inspect Condition-Policy-1.xml

This policy has an empty <Target> and a single <Rule>, “Rule-1”, whose Effect is
“Deny”. Rule-1 has an empty <Target> and a <Condition> (Lines 25 – 33).

A <Condition> is a type of predicate that is more flexible than a match-predicate.
Match-predicates have three main limitations:

1. They use a “hard-coded”, literal value (in an <AttributeValue>).
2. They can only involve a single attribute.
3. Only a subset of XACML functions can be used.

Examples of predicates that match-predicates cannot articulate are:

• The Jurisdiction of the Resource content does not equal “GA”.

• The Jurisdiction of the Resource content is one of “MD” or “VA”.48

• The Subject’s Security Clearance Level Code equals the Resource’s Security
Clearance Level code.

A <Condition> contains a single top-level <Apply> element. An <Apply> element,
via the FunctionId property (see Line 26), is the specification of an invocation of a
XACML function. Unlike with match-predicates, this function can be any function that
returns a Boolean value; there is no restriction on the number or types of input
parameters49. Therefore, parameters to the function may include:

• Literal values, via an <AttributeValue> element

• <AttributeSelector> elements

• Attribute-designator elements

• Other function invocations, via other <Apply> elements

• “Function pointers”, via <Function> elements50

If a <Condition> exists in a <Rule>, then that <Condition> must evaluate to true
for the <Rule> to be applicable to a request (see Table 20 for more details).

The <Condition> of Rule-1 in Condition-Policy-1 uses the XACML “not” function as
its top-level function call. This function takes in a single Boolean parameter and
returns the opposite of that parameter (i.e., true becomes false, and false becomes
true). The parameter to the “not” function is another <Apply> element (Line 27)
specifying a call to the “string-is-in” function.

The “string-is-in” function takes in two parameters. The first must be a primitive
string value. Line 28 specifies an <AttributeValue> with a literal value of “GA” as

48 This predicate could be expressed using multiple match-predicates, but not a single one.
49 Recall that match-predicates can only use functions that return a Boolean value and takes in two primitive values as
parameters.
50 The difference between the <Apply> element and the <Function> element should become apparent through the
examples provided in this Lesson.

 40

the first parameter. The second parameter to “string-is-in” must be a bag of string
values. Lines 29 – 30 specify an <AttributeSelector>, which results in a bag of
values, as the second parameter. The “string-is-in” function returns true if the first
parameter is equal to at least one of the values of the second parameter.

This <Condition> predicate can be read: “the Arrest Record does not contain a
Jurisdiction value of ‘GA’.” When this rule condition is true, the rule will evaluate to
its Effect: “Deny”.

3.1.5.2 Inspect Request-1.xml

This is the same as Content-Request-1 of Lesson 3.1.4, except that the Jurisdiction of
the Arrest Record is “FL” instead of “GA”.

3.1.5.3 Evaluate Condition-Policy-1 against Request-1

The <Decision> for “Resource-1” should be “Deny” since the Jurisdiction of the
Arrest Record in the Resource content is not “GA” (it is “FL”). Confirm that this is the
case.

3.1.5.4 Inspect Condition-Policy-2.xml

This policy, like Condition-Policy-1, has an empty <Target> and a single <Rule>,
“Rule-1”, with an empty <Target> and a <Condition>.

The <Condition> (Lines 25 – 33) uses the “any-of-any” XACML function at its top-
level. This function takes in three parameters. The first parameter must be a
<Function> element specifying a function that returns a Boolean and takes in two
primitive values. The second and third parameters must be bags of values, and the
DataType values of those bags must match the expected DataType values of the
<Function> element. The “any-of-any” function applies the function specified by the
first parameter between each value of the second parameter and each value of the
third parameter. The “any-of-any” function returns true if at least one of the
<Function> invocations returns true. Otherwise, the “any-of-any” function returns
false.

The <Condition> of Rule-1 will evaluate to true if the Employment Jurisdiction of
the request Subject matches the Jurisdiction of the Arrest Record.

3.1.5.5 Inspect Request-2.xml

 41

The structure of Request-2 is similar to Request-1 of this Lesson, except that
Request-2 contains a GFIPM Employment Jurisdiction Subject attribute. Also note
that the values of the requested Resource Arrest Record have been changed.

3.1.5.6 Evaluate Condition-Policy-2 against Request-2

The <Decision> for “Resource-2” should be “Permit” since the GFIPM Employment
Jurisdiction of the Subject is the same as the Jurisdiction of the Arrest Record (“FL”).
Confirm that this is the case.

3.1.5.7 Evaluate Request-3

Request-3 is similar to Request-2. The only difference is that Request-3 has a
different Subject attribute. Request-3 specifies that the Subject’s GFIPM Federation
Id is “Officer-3”.

3.1.5.8 Challenge: Create a new policy

Create a file called: “Condition-Policy-3.xml”. In this file, author a policy that will
permit a Subject to read Arrest Records for which the Subject was the arresting
officer. In other words, the GFIPM Federation Id of the request Subject must equal
the value of the <ArrestingOfficerId> element in the Arrest Record, and the
request Subject must be performing the “read” Action.

A solution to this Challenge is in Condition-Policy-3-Solution.xml.

3.1.5.9 Evaluate Condition-Policy-3 against Request-3

Confirm that the <Decision> for “Resource-3” is “Permit”.

3.1.5.10 Inspect Condition-Policy-4.xml

This policy has an empty <Target> and a single <Rule> with an empty <Target>
and one <Condition>. The <Condition> expresses the predicate: “the current date
is less than the date of the accessed record plus sixty months (five years).” Note that
a simpler way to word this predicate is: “the accessed record is less than sixty
months (five years) old.” However, this simpler wording is not in a form that’s
directly implementable in XACML.

The attribute-expression “the date on the accessed record plus sixty months”
expresses a manipulation on the “record date” attribute; that attribute is
manipulated by adding 60 months.

 42

The top-level Function of the <Condition> is “date-less-than”, which takes in two
parameters of type “date” and returns true if the first parameter is an earlier date
than the second parameter. If the first parameter equals the second parameter or if
the first parameter is a later date than the second parameter, then “date-less-than”
returns false.

The first parameter to “date-less-than” (Lines 28 – 32) is effectively the date at
which the request was constructed by the PEP. The XACML “current-date”
Environment attribute represents this date51. An attribute-designator is used (see
Lines 29 – 31) which provides a bag of values, but the “date-less-than” function
requires a single primitive value, not a bag. Therefore, the “date-one-and-only”
function (Line 28) is used. This function returns the single date primitive value from
a bag of date values or throws an error if there is more than one value in the bag.

The second parameter to “date-less-than” (Lines 33 – 41) expresses the “date on the
accessed record plus sixty months” attribute-expression. The “date-add-
yearMonthDuration” function (Line 34) returns the result of adding a duration of
years and months (in this case 60 months; see Lines 39 - 40) to a date value (in this
case the date on the accessed record; see Lines 35 – 38).

3.1.5.11 Evaluate Condition-Policy-4 against Request-4 and Request-5

Request-4 is similar to Request-1. The main difference is that Request-4 seeks
access to an Arrest Record from Valentine’s Day 2007 and includes a value for the
XACML current-date Environment attribute. Recall that this attribute represents the
date at which the XACML request was created and is used in the <Condition> in
Condition-Policy-4. Request-4 expresses a XACML request that was constructed by
the PEP on Valentine’s Day 2012.

The value of the current-date Environment attribute is exactly five years later than
the date of the record. Therefore, Request-4 should cause Condition-Policy-4 to
evaluate to “NotApplicable”. Evaluate Condition-Policy-4 against Request-4 and
confirm this result.

Now, inspect Request-5.xml. Request-5 is the same as Request-4 except that the
current-date attribute of Request-5 has the value of “2012-02-13” which is just one
day less than five years later than the date of the record. Request-5 should therefore
cause Condition-Policy-4 to evaluate to “Permit”. Evaluate Condition-Policy-4
against the Request-5 and confirm the result.

51 XACML request construction is covered in Lesson 3.3.3.2.

 43

3.1.6 Aggregating Multiple Rules

Goals:

1. Understand how to aggregate multiple rules into a single policy.
2. Understand the potential for conflicts.
3. Understand how rule combining algorithms are used.

Summary:

In this Lesson, you will inspect, analyze, manipulate, and evaluate policies that have
multiple rules. You will learn about conflicts among rules and how rule-combining
algorithms resolve those conflicts. Also, you will be challenged with authoring a
policy that expresses a source policy with multiple rules.

Steps:

3.1.6.1 Inspect Policy-1.xml

This policy has an empty <Target> and contains two rules. The first rule (Lines 16 –
35), “Rule-1”, has an Effect of “Permit”. The second rule (Lines 37 – 65), “Rule-2”,
has an Effect of “Deny”. Rule-1 can be read: “Officers can perform any Action in any
Environment on Arrest Records for which they are the arresting officer.” Rule-2 can
be read: “Arrest Records in the ‘MD’ Jurisdiction cannot be deleted by any Subject in
any Environment.”

The two rules have conflicting Effect values. During evaluation against a request, if
both rules are applicable to the request, the policy will evaluate to “Deny” due to its
rule-combining algorithm.

The rule-combining algorithm of the policy is “deny-overrides” (see Line 6). With
“deny-overrides”, if any rule evaluates to “Deny”, then the policy will evaluate to
“Deny”. If no rule evaluates to “Deny”, but at least one rule evaluates to “Permit”,
then the policy will evaluate to “Permit”. Otherwise, the policy will evaluate to
“NotApplicable”.

Along with “deny-overrides”, main rule-combining algorithms available in XACML
are “permit-overrides” and “first-applicable”52. The “permit-overrides” algorithm
can be considered the inverse of “deny-overrides”: “Permit” decisions take
precedence over “Deny” decisions. With the “first-applicable” algorithm, the rules
are evaluated in the order as they appear in the policy; the policy evaluates to the

52 The complete list and semantic definitions of all standard rule combining algorithms is in Appendix C of the
XACML 2.0 Specification.

 44

Effect of the first rule that is applicable to the request, or “NotApplicable” if no rules
are applicable.53

3.1.6.2 Inspect Request-1.xml

Request-1 is the articulation of a request by Officer-1 to delete Resource-1 which is
an Arrest Record. Officer-1 is the arresting officer and the arrest Jurisdiction is “VA”.

3.1.6.3 Evaluate Policy-1 against Request-1

First, let’s manually determine what the result should be. Since the policy uses the
“deny-overrides” combining algorithm, we should check Rule-2 (the “Deny” rule)
first. Rule-2 is not applicable to the request since the Jurisdiction in the request is
“VA” and not “MD”.

Now, let’s consider Rule-1. Rule-1 is applicable to the request since Officer-1 is
attempting access on a record of which Officer-1 is the arresting officer. Therefore,
the policy should evaluate to “Permit”.

Confirm that the <Decision> of Resource-1 is “Permit”.

3.1.6.4 Inspect Request-2.xml

Request-2 is the articulation of a request by Officer-2 to delete Resource-2, which is
an Arrest Record. Officer-2 is the arresting officer and the Jurisdiction is “MD”.

3.1.6.5 Evaluate Policy-1 against Request-2

First, let’s manually determine what the result should be. We’ll check Rule-2 first.
Rule-2 should be applicable to the request since the Jurisdiction in the request is
“MD”. Since a “Deny” rule is applicable, and since the rule-combining algorithm is
“deny-overrides”, there is no need to check Rule-1. The policy should evaluate to
“Deny”.

Confirm that the <Decision> of Resource-2 is “Deny”.

3.1.6.6 Inspect Request-3.xml

53 These are simplified descriptions of the semantics of “deny-overrides”, “permit-overrides”, and “first-applicable”.
These algorithms also handle cases where a rule evaluates to “Indeterminate”.

 45

Request-3 is the articulation of a request by Officer-3 to read Resource-3, which is
an Arrest Record. Officer-4 is the arresting officer and the Jurisdiction is “MD”.

3.1.6.7 Evaluate Policy-1 against Request-3

First, let’s manually determine what the result should be. We’ll check Rule-2 first.
Rule-2 should not be applicable to Request-3 since Rule-2 applies to the delete
Action and Request-3 seeks a read Action.

Now, let’s consider Rule-1. Rule-1 should not be applicable to the request since the
request Subject, Officer-3, does not match the arrest record’s OfficerID, Officer-4.
Therefore, the policy should evaluate to “NotApplicable”.

Confirm that the <Decision> for Resource-3 is “NotApplicable”.

3.1.6.8 Challenge: Create a new policy with multiple rules

The <Description> of Policy-1 (Lines 8 – 12) states: “Officers can perform any
Action on Arrest Records for which they are the arresting officer. However, under
no circumstances can records in the ‘MD’ Jurisdiction be deleted.” Your Challenge is
to create a new policy with a slightly different articulation: “Officers can perform
any Action on Arrest Records for which they are the arresting officer. However,
under no circumstances can records in the ‘MD’ Jurisdiction be deleted, except by
holders of a Top Secret Clearance. Holders of a Top Secret Clearance can perform
any Action on any Record in any Environment.”

Save your new policy in a file called “Policy-2.xml”. There are several possible
solutions to this Challenge. One solution is provided in Policy-2-Solution.xml.

3.1.6.9 Inspect Policy-2-Solution.xml

Let’s compare Policy-2-Solution to Policy-1. The rule-combining algorithm was
changed to “first-applicable”. A new Rule-1 provides total access to request Subjects
with a Top Secret Security Clearance Level Code. Rule-2 stayed the same. Rule-1
from Policy-1 became Rule-3 in Policy-2-Solution.

The Description of Rule-1 of Policy-2-Solution (Lines 20 – 23) states: “Holders of a
Top Secret Clearance can perform any Action on any Record in any Environment.”
When evaluating this policy against a request, the PDP will first evaluate Rule-1. If
Rule-1 applies to a request, then the “first-applicable” rule-combining algorithm
tells the PDP to proceed no further and to apply the Effect of Rule-1: “Permit”. If
Rule-1 is not applicable to the request, then the PDP will evaluate Rule-2. If Rule-2 is

 46

not applicable to the request, then the PDP will evaluate Rule-3. If Rule-3 is not
applicable, then the policy will evaluate to “NotApplicable”.

3.1.6.10 Inspect Request-4.xml

Request-4 can be articulated as follows: “Officer-4, who has a Top Secret Clearance,
is attempting to delete Resource-4, which is an Arrest Record. Officer-4 is the
arresting officer and the Jurisdiction is ‘MD’.”

3.1.6.11 Evaluate Policy-2 against Request-4

Use Request-4 to test your Policy-2 (and Policy-2-Solution). Confirm that the
<Decision> for Resource-4 evaluates to “Permit”, since the request matches Rule-1.

3.1.6.12 Inspect Request-5.xml

Request-5 can be articulated as follows: “Officer-5, who has a Secret Clearance, is
attempting to delete Resource-5, which is an Arrest Record. Officer-5 is the arresting
officer and the Jurisdiction is ‘MD’.”

3.1.6.13 Evaluate Policy-2 against Request-5

Use Request-5 to test your Policy-2 (and Policy-2-Solution). Rule-1 should not be
applicable to the request since Officer-5 does not have a Top Secret Clearance. Rule-
2 should be applicable since the request is an attempt to delete an Arrest Record in
the “MD” Jurisdiction. Therefore, Policy-2 should evaluate to “Deny”.

Confirm that the <Decision> for Resource-5 is “Deny”.

3.1.6.14 Inspect Request-6.xml

Request-6 can be articulated as follows: “Officer-6, who has a Secret Clearance, is
attempting to delete Resource-6, which is an Arrest Record. Officer-6 is the arresting
officer and the Jurisdiction is ‘VA’.”

3.1.6.15 Evaluate Policy-2 against Request 6

Use Request-6 to test your Policy-2 (and Policy-2-Solution). Rule-1 should not be
applicable to the request since Officer-6 does not have a Top Secret Clearance. Rule-
2 should not be applicable since the Jurisdiction of the record is not “MD”. Rule-3

 47

should be applicable since Officer-6 is both the Subject of the request and the
arresting officer on the record. Therefore, Policy-2 should evaluate to “Permit”.

Confirm that the <Decision> for Resource-6 is “Permit”.

3.1.7 Aggregating Multiple Policies

Goals:

1. Understand how to aggregate multiple <Policy> elements in a <PolicySet>
element.

Summary:

In this Lesson, you will inspect, analyze, and evaluate a policy consisting of a top-
level <PolicySet> element and multiple <Policy> sub-elements. We provide the
context of a local implementing agency needing to aggregate policies from multiple
levels of authority, illustrating how policy-combining algorithms resolve conflicts
among policies in a policy set.

Steps:

3.1.7.1 Inspect PolicySet-1.xml

PolicySet-1 is a <PolicySet>. It has a PolicySetId identifier (Line 5), and a
PolicyCombiningAlgorithm of “permit-overrides” (Line 6). Policy-combining
algorithms work in a similar manner to rule-combining algorithms. PolicySet-1
specifies a <Target> (Lines 16 – 26) and two <Policy> elements (the first on Lines
28 – 103 and the second on Lines 105 – 160). The first <Policy> represents a
federation-level policy (of the “ExampleFederation”) and the second represents a
policy that’s local to the agency that is implementing this <PolicySet> (“Agency-A”).

This <PolicySet> is concerned with access to the criminal history records of
Agency-A. Arrest Records constitute the entirety of criminal history data of Agency-
A. Accordingly, the <Target> of the <PolicySet> specifies that the GFIPM Criminal
History Data Indicator of the Resource must be true.

The first <Policy>, Federation-Policy-1, is the federation-level policy. It can be
articulated as: “A federated user can read criminal history data (Arrest Records) if
that user meets the following criteria: they are a sworn law enforcement officer,
they possess the criminal history data agency home search privilege, and they have
legal jurisdiction in the jurisdiction of the record.”54 The Subject match-predicate on

54 Note that Federation-Policy-1 duplicates the <ResourceMatch> that is in the <Target> of the
<PolicySet> because Federation-Policy-1 needs to be a complete policy in and of itself.

 48

Lines 53 – 57 uses the “string-regexp-match” XACML function to determine if the
Subject is a member of ExampleFederation by checking the GFIPM Federation Id
attribute55.

The second <Policy>, Local-Policy-1, is the local-level policy. It can be articulated
as: “All sworn law enforcement officers of Agency-A who are authorized to search
criminal history data are allowed to read any criminal history record.”

PolicySet-1 uses the “permit-overrides” policy combining algorithm, therefore
“Permit” decisions take precedence over “Deny” decisions. However, since
PolicySet-1 does not contain any “Deny” rules, it will never evaluate to “Deny”. It can
only evaluate to “Permit” or “NotApplicable”56.

3.1.7.2 Evaluate PolicySet-1 against Request-1

The <Target> of PolicySet-1 will match Request-1 since the request is for criminal
history data. Therefore, Federation-Policy-1 will be evaluated.

Federation-Policy-1 will not be applicable to the request since the jurisdiction of the
request Subject (“VA”) does not match the jurisdiction of the record (“GA”).
Therefore, Local-Policy-1 will be evaluated.

Local-Policy-1 will be applicable to the request since the Subject is a member of
Agency-A (see Lines 6 – 8 of Request-1), is a sworn law enforcement officer, and is
authorized to search criminal history data records (see Lines 24 – 27 of Request-1).
Therefore, PolicySet-1 should evaluate to “Permit”.

Confirm that the <Decision> for Resource-1 is “Permit”.

3.1.7.3 Evaluate PolicySet-1 against Request-2

The <Target> of PolicySet-1 will match Request-1 since the request is for criminal
history data. Therefore, Federation-Policy-1 will be evaluated.

Federation-Policy-1 will not be applicable to the request since the Subject does not
have the criminal history data home agency search privilege (see Lines 20 – 23 of
Request-2). Therefore, Local-Policy-1 will be evaluated.

Local-Policy-1 will not be applicable to the request since the Subject is not a
member of Agency-A (see Lines 6 – 8 of Request-2). Therefore, PolicySet-1 should
evaluate to “NotApplicable”.

55 See http://gfipm.net/standards/metadata/2.0/user/FederationId.html.
56 Theoretically, PolicySet-1 can also evaluate to “Indeterminate”, however, we have designed the policy
and requests to avoid this result.

 49

Confirm that the <Decision> for Resource-2 is “NotApplicable”.

3.1.7.4 Evaluate PolicySet-1 against Request-3

The <Target> of PolicySet-1 will match Request-1 since the request is for criminal
history data. Therefore, Federation-Policy-1 will be evaluated.

Federation-Policy-1 will be applicable to the request (you should be able to
determine why). Therefore Federation-Policy-1 should evaluate to “Permit”. Given
the policy-combining algorithm “permit-overrides”, there will be no need to
evaluate Local-Policy-1, and PolicySet-1 should evaluate to “Permit”.

Confirm that the <Decision> for Resource-3 is “Permit”.

3.1.8 Obligations

Goals:

1. Understand how obligations are expressed in XACML.
2. Understand that obligation semantics are outside of the scope of XACML.

Summary:

This Lesson introduces obligations. You will analyze and evaluate a policy
containing multiple obligations. There is a discussion on the design and handling of
obligations.

Steps:

3.1.8.1 Inspect Policy-1.xml

Policy-1 is based on the Policy-1 from Lesson 3.1.6, with the addition of obligations
using the <Obligations> element (Lines 67 – 91).

In the abstract sense, an obligation is an action that must be performed in
conjunction with policy enforcement. This policy contains three obligations: the first
is on Line 69, the second is on Line 71, and the third is on Lines 73 – 89.

An obligation in XACML (an <Obligation> element) has a FulfillOn property, an
ObligationId property, and a set of zero or more <AttributeAssignment>
elements. The FulfillOn property specifies the decision on which the obligation
must be fulfilled; the value of this property can be “Permit” or “Deny”. The
ObligationId is the identifier of the obligation. An <AttributeAssignment> is an

 50

argument57 of the obligation. An <AttributeAssignment> contains a DataType, an
identifier as an AttributeId, and a literal value.

The first obligation in Policy-1, LogValidAccess, is to be fulfilled on “Permit”; the
PDP will include this obligation in the result when the decision is “Permit”. The
LogInvalidAccess obligation is to be fulfilled on “Deny”; the PDP will include this
obligation in the result when the decision is “Deny”. These obligations instruct the
PEP to write data about the access to an audit log. The PEP must recognize and
know how to handle these obligations. If a PEP does not understand or cannot fulfill
an obligation, then the PEP must not allow access. For these example obligations in
particular, we assume that the PEP (or its Obligation Handler components) will
know how to retrieve the appropriate data to write to the log.

The third obligation, NotifyDataOwner, instructs the PEP to send a notification to
the owner of the accessed record. In our scenario, the owner of an Arrest Record is
the arresting officer. This obligation has three <AttributeAssignment> elements.
The first is DataOwnerId and the value is actually an <AttributeSelector>
containing an XPath expression selecting the value of the <OfficerId> element of the
Arrest Record being accessed. Notice that the angled brackets are URL encoded (i.e.,
“<” becomes “<” and “>” becomes “>”); the PDP will decode these in the result.
We assume that the PEP/Obligation Handler will process this <AttributeSelector>
to retrieve the value for the DataOwnerId argument. We also assume that the
PEP/Obligation Handler will be able to retrieve the appropriate address for the
arresting officer.

The second argument is DataRequestorId and the value is the URL encoded
<SubjectAttributeDesignator> that will retrieve the appropriate value.

The third argument is Message; this is the actual text that should be sent to the
arresting officer. We assume that the PEP will replace “[DataRequestorId]” with the
result of processing the second argument.

How obligations are designed will affect how the PEP (or its Obligation Handler
components) will be designed. Design options include identifier naming
conventions, whether to include arguments, and which arguments to include. We
developed a particular design style for this tutorial, but there are currently no
standard obligation design patterns available. As stated in Section 2.3.1 (Step 6,
Requirement C), the Global Federated Identity and Technical Privacy Task Team is
currently developing a standardized syntax and processing model for various types
of policy obligations.

Since no XACML obligations are returned on the “NotApplicable” decision, care must
be taken in designing policies to avoid this decision where appropriate so that all
necessary obligations are properly returned to the PEP.

57 An “argument” is data that is needed for the proper processing of the obligation.

 51

3.1.8.2 Evaluate Policy-1 against Request-1

This is the same Request-1 from Lesson 3.1.6; therefore we know that the decision
will be “Permit”. Use SimplePDP to evaluate Policy-1 against Request-1, output the
result to “Request-1_Policy-1_Response.xml”, and open the result. Confirm that the
<Decision> for Resource-1 is “Permit”.

Notice the <Obligations> element on Lines 7 – 22. This element contains the two
obligations that were specified to be fulfilled on “Permit”. The PDP simply copies the
appropriate obligations into the result (and decodes any URL-encoded values).

3.1.8.3 Evaluate Policy-1 against Request-2

This is the same Request-2 from Lesson 3.1.6; therefore we know that the decision
will be “Deny”. Use SimplePDP to evaluate Policy-1 against Request-2, output the
result to “Request-2_Policy-1_Result.xml”, and open the result. Confirm that the
<Decision> for Resource-2 is “Deny”.

This result includes the obligation that was specified to be fulfilled on “Deny” (see
Lines 7 – 10).

3.1.8.4 Evaluate Policy-1 against Request-3

This is the same Request-3 from Lesson 3.1.6; therefore we know that the decision
will be “NotApplicable”. Use SimplePDP to evaluate Policy-1 against Request-3,
output the result to “Request-3_Policy-1_Result.xml”, and open the result. Confirm
that the <Decision> for Resource-3 is “NotApplicable”. Since the decision is
“NotApplicable”, no obligations were returned in the result.

3.2 The Sample Implementation Policy and Data Resources

This Lesson Group will introduce the set of source policies that will be used for the
sample implementation. The policies will be based on protecting access to a set of
Arrest Records. We introduce a NIEM IEPD-compliant set of XML schemas for
representing Arrest Records. The Lessons in this Group will systematically build the
XACML policy that will be used in the sample implementation. The resulting XACML
policy will make use of all the XACML features discussed in Lesson Group 3.1 and
will be similar to the policies discussed in Lessons 3.1.7 and 3.1.8.

3.2.1 The NIEM IEPD-Compliant Data Schemas

 52

Goals:

1. Understand the structure defined by the NIEM IEPD-compliant Arrest Record

data schemas.

Summary:

The Arrest Record schemas are in the “$POLICY_GUIDE/arrest_record_iepd/”
directory. The main schema is in the “exchangeSchema.xsd” file. This file references
the schema in the “extensionSchema.xsd” file and several schema files in the “niem”
directory. The schemas are referenced on Lines 18 – 27 in exchangeSchema.xsd.

The file “exchangeSchema.xml” contains a sample conformant XML file that contains
all the data elements that will be used in the Sample Application.

There are no Steps in this Lesson.

3.2.2 The Source Policies and Sample Implementation Context

Goals:

1. Understand the context of the sample implementation.
2. Review the source policy directives that will be translated into XACML.

Summary:

In this Lesson, we provide the context and assumptions for the sample
implementation; these set the stage for the remaining Lessons in this Group. We
then introduce the source policy directives and explain how they are organized.

Steps:

3.2.2.1 Review the Context and Assumptions

We will make the following assumptions when developing the XACML policy.

1. Agency-A and Agency-B are members of the GFIPM Reference Federation58
(the federation may have other member agencies).

2. The source policies will be implemented by Agency-A.
3. The policies are to support a web service, operated by Agency-A, that

accesses criminal history data.
4. All criminal history records take the form of an Arrest Record.
5. The web service provides a service interface for reading records.

58 The GFIPM Reference Federation contains a set of systems and services used for testing compliance and
interoperability with GFIPM.

 53

6. Agency-A has a source policy for controlling access to its own records by its
own employees.

7. All members of the GFIPM Reference Federation have agreed, via a legally
binding contract, to share criminal history data within the federation under
the restrictions of a federation source policy.

8. Agency-A has authored directives that are supplemental to the federation
source policy.

3.2.2.2 Review the Source Policies

The source policies are in the “$POLICY_GUIDE/source-policies.txt” file. Inspect this
file with a text editor. There are three sets of directives - the local organizational
source directive, the federation-level source directive, and the set of directives that
supplement the federation directive. The directives for the local organizational
policy have labels with a prefix of “OD”. The prefix “FD” is used in the federation-
level policy, and the prefix “SD” is used by the supplemental directives.

Each directive either expresses an authorization or an obligation. The authorization
directives are OD1 and FD1. The other directives are obligation directives. Real
source policies may not be as cleanly organized as the directives in this guide. When
dealing with these real source policies, we recommend that the policy author
attempt to re-write the real source policies into organized collections of directives
using the style of the directives in this guide.

3.2.3 Identification of Attributes and Predicates

Goals:

1. Understand how to identify the attributes and predicates of an authorization

directive.

Summary:

When translating source policies into XACML, we need to first identify all the
attributes and predicates that exist in the authorization directives of the source
policy. We will step through this task for each source policy directive.

Steps:

3.2.3.1 Process the Local Organization Source Policy Directive

To translate source policies into XACML, the XACML author must determine which
attributes (from the attribute dictionaries being used) are used in the policy, and
what predicates exist in the policy. Identifying the attributes first will help us

 54

identify the predicates. Our XACML policy will use standard XACML attributes and
attributes from the GFIPM Metadata Specification.

There is a single directive in the local organization source policy. Directive OD1
reads “All sworn law enforcement officers of Agency-A who are authorized to search
criminal history data in their home agency, may read any criminal history data for
which the arresting officer is a member of Agency-A.” Let’s list all the attributes that
appear in this directive:

1. “Sworn law enforcement officer” corresponds to the GFIPM Sworn Law
Enforcement Officer Indicator attribute.

2. “Agency-A” is a value of the GFIPM Employer Name attribute.

3. The phrase “authorized to search criminal history data in their home agency”

can correspond to one of two GFIPM criminal history data search privilege
attributes: the Self privilege59, or the Agency privilege60. Most current GFIPM-
based federations use the Self privilege and not the Agency privilege.
Therefore, in this tutorial, we will use the Self privilege which is represented
by the GFIPM Criminal History Data Self Search Home Privilege Indicator
attribute.

4. The action in this directive is “read”. Actions are specified using the GFIPM
Action Type attribute. Note that the appropriate value we need use in the
XACML policy is “Read” (The GFIPM Metadata Spec specifies that for values
of the Action Type attribute, the first letter needs to be capitalized).

Note that we could have alternatively chosen to use the XACML “action-id”
attribute to represent action values. A significant difference is that the
XACML action-id attribute does not specify a code set of valid values.

5. “Criminal history data” corresponds to the GFIPM Criminal History Data

Indicator attribute.

6. “Arresting officer” corresponds to a field in an Arrest Record. More
specifically, we care about the field that contains the agency name of the
arresting officer. This value does not correspond to a “named” attribute61
from an attribute dictionary.

Now let’s list all the predicates in directive OD1. Recall that, as explained in Lesson
Step 3.1.1.1, a XACML predicate is a true or false statement about attributes.

59 See http://gfipm.net/standards/metadata/2.0/user/CriminalHistoryDataSelfSearchHomePrivilegeIndicator.html.
60 See http://gfipm.net/standards/metadata/2.0/user/CriminalHistoryDataAgencySearchHomePrivilegeIndicator.html.
61 A named attribute is an <Attribute> element in a XACML request. This is in contrast to attribute values retrieved
via an XPath expression in an <AttributeSelector> element in a policy.

 55

1. Directive OD1 states that all sworn law enforcement officers may perform
some action. Therefore the corresponding predicate is: “the GFIPM Sworn
Law Enforcement Officer Indicator attribute of the Subject is true.”

2. Directive OD1 states that the requestor must be a member of Agency-A. The
corresponding predicate is: “the GFIPM Employer Name attribute of the
Subject equals ‘Agency-A’.”

3. The directive states that the requestor must be authorized to search criminal

history data in Agency-A. The corresponding predicate is: “the GFIPM
Criminal History Data Self Search Home Privilege Indicator attribute of the
Subject is true.”

4. The directive is for the “read” action. The corresponding predicate is: “the

GFIPM Action Type attribute equals ‘Read’.”

5. The directive states that criminal history data may be accessed. The
corresponding predicate is: “the GFIPM Criminal History Data Indicator
attribute of the Resource is true.”

6. The directive states that the agency of the arresting officer must be Agency-A.
The corresponding predicate is: “the field in the resource that refers to the
agency of the arresting officer equals ‘Agency-A’.”

We will now put these predicates into tabular form to make them easier to process;
Table 2 contains these predicates. Recall from Lesson Step 3.1.1.1 that a XACML
predicate takes the form: “attribute-expression, Boolean operation, attribute-

expression”. The XACML class of each attribute is shown in parenthesis in the table.

 56

Predicate

Label

First Attribute

Expression

Boolean

Operation

Second Attribute Expression

OD1P1 GFIPM Sworn Law

Enforcement Officer

Indicator User attribute

(Subject)

equals “true”

OD1P2 GFIPM Employer Name

User attribute (Subject)

equals “Agency-A”

OD1P3 GFIPM Criminal History

Data Self Search Home

Privilege Indicator User

attribute (Subject)

equals “true”

OD1P4 GFIPM Action Type

attribute (Action)

equals “Read”

OD1P5 GFIPM Criminal History

Data Indicator Resource

attribute (Resource)

equals “true”

OD1P6 The resource field

corresponding to the

agency of the arresting

officer (Resource)

equals “Agency-A”

Table 2: Predicate Table for Directive OD1

Directive OD1 permits access, for a given request, if all the predicates evaluate to
true for that request.

3.2.3.2 Process the Federation Source Policy Directive

Directive FD1 reads: “All sworn law enforcement officers of the GFIPM Reference
Federation, who are authorized to search criminal history data in their home
agency, may read criminal history data, provided that the following are true: (1) the
requestor is assigned to the jurisdiction of the record; and (2) the requestor has
been authenticated at NIST level 3 or 4.” Table 3 contains the list of predicates for
directive FD1 in tabular form.

 57

Predicate

Label

First Attribute

Expression

Boolean

Operation

Second Attribute

Expression

FD1P1 GFIPM Sworn Law

Enforcement Officer

Indicator attribute

(Subject)

equals “true”

FD1P2 GFIPM Identity

Provider Id attribute

(Subject)

begins with “GFIPM:”

FD1P3 GFIPM Criminal History

Data Self Search Home

Privilege Indicator

attribute (Subject)

equals “true”

FD1P4 GFIPM Action Type

attribute (Action)

equals “Read”

FD1P5 GFIPM Criminal History

Data Indicator

attribute (Resource)

equals “true”

FD1P6 GFIPM Electronic

Authentication

Assurance Level Code

attribute (Subject)

equals “NISTLEVEL3”

FD1P7 GFIPM Electronic

Authentication

Assurance Level Code

attribute (Subject)

equals “NISTLEVEL4”

FD1P8 GFIPM Employment

Jurisdiction attribute

(Subject)

at least one value

equals

The resource field that

corresponds to the

jurisdiction of the record

(Resource)
Table 3: Predicate Table for Directive FD1

Note that both attribute expressions of the eighth predicate include attributes and
not literal values. Therefore, FD1P8 will need to be implemented in XACML as a rule
condition62.

Directive FD1 permits access, for a given request, if all of the following are true:

• Each of FD1P1, FD1P2, FD1P3, FD1P4, FD1P5, and FD1P8 are true

• At least one of FD1P6 or FD1P7 is true

Directives SD1 and SD2 express obligations. These obligations will be covered in
Section 3.2.4.

62 A match-predicate cannot express a predicate involving multiple attributes.

 58

3.2.4 Obligation Design

Goals:

1. Understand our approach to designing XACML obligations.
2. Process the obligation directives.

Summary:

In this Lesson, we identify the arguments and semantics of each obligation directive,
in preparation for translation into XACML. We explain the design approach that we
use. However, recall that there are no known standardized obligation design
patterns at the time of this writing.

Steps:

3.2.4.1 Process Directive SD1

Directive SD1 reads: “On successful access attempts, the arresting officer of the
accessed record must be notified of the access via email.” This directive expresses
an obligation that requires a notification be sent to an entity.

In general, when designing obligations, the designer needs to specify the set of
arguments and define the processing semantics for each obligation. The processing
semantics needs to specify how the arguments are to be processed and what actions
need to occur for the obligation to be considered fulfilled. For this tutorial, we will
allow an argument of an obligation to be either an attribute-expression or a
predicate.

The component that will fulfill this obligation will need to determine the address to
which the notification will be sent. We will design the obligation to provide this
address to the handler component. This address will be an argument to the
obligation.

We will use “NotifyViaEmail” as the identifier for this obligation. The arguments are
listed in Table 4.

 59

Argument Identifier Type Value

Message Literal “[RecordId] has been accessed by

[RequestorId] of [RequestorAgencyName]

at [AccessDateTime].”

ArrestingOfficerEmailAddress Attribute The Resource field corresponding to the

email address of the arresting officer

(Resource)

RecordId Attribute XACML resource-id attribute (Resource)

RequestorId Attribute GFIPM Federation Id attribute (Subject)

RequestorAgencyName Attribute The Resource field corresponding to the

agency name of the arresting officer

(Resource)

AccessDateTime Attribute XACML current-dateTime attribute

(Environment)
Table 4: Arguments of the NotifyViaEmail Obligation

In the value of the Message argument, there are four terms that are in square
brackets. These terms are the identifiers of four other arguments. For the obligation
design pattern used in this tutorial, the obligation handler is expected to replace
these terms with the values of the respective arguments. If the obligation handler
cannot successfully perform a replacement, then the obligation must be treated as
not fulfilled.

The description of the processing semantics for this obligation follows. The Message
must be sent via email to ArrestingOfficerEmailAddress. If the email is sent
successfully, then the obligation is fulfilled, otherwise the obligation is not fulfilled.

Note that this processing semantics does not require any confirmation that the
email has been received by the appropriate recipient. The obligation can be treated
as fulfilled even if a “bounce-back” email is returned to the sender.

3.2.4.2 Process Directive SD2

Directive SD2 reads: “Successful attempts to access data must be logged for at least
60 months. The following data must be logged: (1) the requestor id, (2) the record
id, (3) the action, and (4) the date-time of the access.” This directive expresses an
obligation to write to an audit log. This obligation is able to be fulfilled by a handler
that is local to the PEP.

We will use “LogValidAccess” as the identifier of this obligation. The arguments are
in Table 5.

 60

Argument Identifier Type Value

RequestorId Attribute GFIPM Federation Id attribute (Subject)

RecordId Attribute XACML resource-id attribute (Resource)

ActionType Attribute GFIPM Action Type attribute (Action)

AccessDateTime Attribute XACML current-dateTime attribute

(Environment)

ExpirationDateTime Attribute

(Manipulated)

XACML current-dateTime attribute

(Environment) plus “60 months”.
Table 5: Arguments of the LogValidAccess Obligation

The processing semantics of this obligation are: A log entry must be written to the
PEP’s local audit log. The entry must include RequestorId, ResourceId, ActionType,
and AccessDateTime. The entry must be configured to not be deleted prior to the
date and time specified by the ExpirationDateTime argument.

3.2.5 Sample Implementation Users, Resources, and Test Cases

Goals:

1. Review the user accounts that were created for testing the sample
implementation.

2. Review the resources that were created for testing the sample
implementation.

3. Review the test cases we will use to verify that our XACML policy and sample
implementation have been implemented correctly.

Summary:

Five test user accounts were provisioned in the GFIPM Reference Federation for the
purposes of testing the sample implementation. Two Arrest Record files were
created for testing. We will explore the attributes of these user accounts and details
of the records. We will then review the test cases that we will use to verify that our
XACML policy and sample implementation have been implemented correctly. We
will determine the expected policy evaluation results of executing each test case
against the predicates and obligations that we designed in Lessons 3.2.3 and 3.2.4.

Steps:

3.2.5.1 Review the Sample Implementation Users

 61

Table 6 contains a list of the federation user accounts that will be used for testing
the policies and the sample application. The first six columns correspond to GFIPM
user attributes.

User Id Employer

Name

Jurisdiction
63

SLEO?
64

CHD

Search?
65

Auth

Level66

Identity

Provider

Id

xu01 Agency-A GA true false NISTLEVEL4 Agency-A

xu02 Agency-A GA true true NISTLEVEL2 Agency-A

xu03 Agency-A VA true true NISTLEVEL3 Agency-A

xu04 Agency-B GA true true NISTLEVEL2 Agency-B

xu05 Agency-B VA true true NISTLEVEL3 Agency-B
Table 6: Sample Implementation Users

The user ids in the first column are an abbreviation of each user’s GFIPM Federation
Id attribute value. Federation Id attribute values are of the form
“GFIPM:TIB:XACMLTestBroker:IDP:<EmployerName>:USER:<user-id>”67, where
<EmployerName> is the actual name of the user’s employer, as shown in the second
column, and <user-id> is the abbreviated identifier in the first column.

The identity provider identifiers in the last column are also abbreviated. The full
identifiers are of the form “GFIPM:TIB:XACMLTestBroker:IDP:<EmployerName>”68,
where <EmployerName> is the actual name of the user’s employer, as shown in the
second column.

Note that the email address of each user is not shown in Table 6. The email address
of a user, in our sample implementation, is <user-id>@<EmployerName>.gov.

3.2.5.2 Review the Sample Implementation Resources

Two criminal history records, in the form of Arrest Records, are provided in the
sample application. The details of these records are shown in Table 7.

63 This column corresponds to the GFIPM Employment Jurisdiction attribute.
64 This column corresponds to the GFIPM Sworn Law Enforcement Officer Indicator attribute.
65 This column corresponds to the GFIPM Criminal History Data Self Search Privilege Indicator attribute.
66 This column corresponds to the GFIPM Electronic Authentication Assurance Level Code attribute.
67 Details on the parts of this identifier are at http://gfipm.net/standards/metadata/2.0/user/FederationId.html.
68 Details on the parts of this identifier are at http://gfipm.net/standards/metadata/2.0/user/IdentityProviderId.html.

 62

Record Id Subject Id Jurisdiction Date Officer Id

Record-1 Subject-1 GA 2012-01-19 xu02

Record-2 Subject-2 VA 2012-02-21 xu03

Table 7: Sample Implementation Resources

The first record states that officer xu02 arrested Subject-1 on January 19, 2012, in
Georgia. The second record states that officer xu03 arrested Subject-2 on February
21, 2012, in Virginia.

The XML files that correspond to these records are in the
“$POLICY_GUIDE/data_records/” directory.

3.2.5.3 Review the Sample Implementation Test Cases

Table 8 contains six test cases that will be used to test the policy and sample
application. Each test case represents a certain user attempting to read a certain
record. The table shows the expected results of evaluating the two non-obligation,
source directives against each test case.

Test Case # Requestor

Id

Record Id OD1

Evaluation

FD1 Evaluation

1 xu01 Record-1 NotApplicable NotApplicable

2 xu02 Record-2 Permit NotApplicable

3 xu03 Record-2 Permit Permit

4 xu04 Record-1 NotApplicable NotApplicable

5 xu05 Record-1 NotApplicable NotApplicable

6 xu05 Record-2 NotApplicable Permit

Table 8: Sample Implementation Test Cases

When a test case will cause an appropriate combination of predicates in the source
policy directives to be true, then the corresponding directives will evaluate to
“Permit”. For each scenario in which a source policy directive evaluates to
“NotApplicable”, we provide the reasoning in the descriptions that follow.

 63

Test Case 1 will cause directives OD1 and FD1 to evaluate to “NotApplicable”
because user xu01 does not have the criminal history data self search privilege.
Predicates OD1P3 and FD1P3 will be false for this test case.

Test Case 2 will cause directive FD1 to evaluate to “NotApplicable” because
predicates FD1P6 and FD1P7, concerning the GFIPM Electronic Authentication
Assurance Level Code attribute, will both be false. Also, predicate FD1P8 will be false
due to the jurisdictions of the user and the record not being equal.

Test Case 4 will cause directive OD1 to evaluate to “NotApplicable” because user
xu04 is not in Agency-A; predicate OD1P2 will be false. This test case will cause
directive FD1 to evaluate to “NotApplicable” because user xu04 has a GFIPM
Electronic Authentication Assurance Level Code attribute value of “NISTLEVEL2”;
predicates FD1P6 and FD1P7 will be false.

Test Case 5 will cause directive OD1 to evaluate to “NotApplicable” because user
xu05 is not in Agency-A; predicate OD1P2 will be false. This test case will cause
directive FD1 to evaluate to “NotApplicable” because the jurisdictions of the user
and the record not being equal; predicate FD1P8 will be false.

Test Case 6 will cause directive OD1 to evaluate to “NotApplicable” because user
xu05 is not in Agency-A; predicate OD1P2 will be false.

In Lesson 3.2.6, we will translate the source policy directives into XACML policies,
translate the test cases into XACML requests, execute the test cases, and compare
the results with the expected outcomes that were covered in this Step.

3.2.6 XACML Policy Implementation

Goals:

1. Understand how to translate the test cases into XACML requests.
2. Understand how to translate the designed predicates and obligations into a

XACML policy.
3. Test our XACML policy against the XACML requests.

Summary:

In this Lesson, we explain our strategy for implementing the designed predicates,
obligations, and test cases into XACML. This strategy includes using a combining
algorithm to aggregate multiple individual XACML policies together to form a single,
top-level policy for the sample application. You will be challenged with using the
knowledge presented in Lesson Group 3.1 to create the XACML implementations.

Steps:

 64

3.2.6.1 Review the Implementation Strategy

There are three levels of authority represented by the source directives: Agency-A
(OD1); the federation (FD1, FD2); and Agency-A supplementing the federation
directives (SD1, SD2). We will create a separate XACML policy for each level of
authority. This will result in a module policy design in which changes to a source
policy of a single authority will be isolated in a single XACML policy. Since all
agencies in the federation will abide by the federation-level source policy, the
XACML policy representing this source policy should theoretically be able to be
shared and installed by each agency.

The three XACML policies will need to be aggregated into a single <PolicySet>. The
three individual policies and the aggregated policy will be stored at the
“$POLICY_GUIDE/policies/” directory.

3.2.6.2 Challenge: Create a XACML Request for Each Test Case

In the “$POLICY_GUIDE/test_cases/” directory, create a XACML request for each test
case in Table 8. Name each request file: “Request-<test-case-number>-
Challenge.xml”. For example, name the file for the second test case: “Request-2-
Challenge.xml”.

In the Subject section of each request, include the following attributes:

• GFIPM Federation Id

• GFIPM Employer Name

• GFIPM Employment Jurisdiction

• GFIPM Sworn Law Enforcement Officer Indicator

• GFIPM Criminal History Data Self Search Home Privilege Indicator

• GFIPM Electronic Authentication Assurance Level Code

• GFIPM Identity Provider Id

• GFIPM Email Address Text

Populate the values of these attributes with the values from Table 6 and Section
3.2.5.1.

In the Resource section of each request, include the appropriate data record in the
<ResourceContent> element, and include the following attributes:

• XACML resource-id
o The value of this attribute is the id of the requested record.

• GFIPM Criminal History Data Indicator
o The value of this attribute should be “true” (without the quotes).

 65

In the Action section of each request, include the GFIPM Action Type attribute with a
value of “Read” (without the quotes).

In the Environment section of each request, include the XACML current-dateTime
attribute with a value that you choose. You should choose a date that is after 2012-
02-21, the date of the latest data record, to make sure our tests simulate that the
requests happen after the data records have been created. The format for the date-
time value is “YYYY-MM-DDTHH:MM:SS”69, where:

• YYYY is a four digit year

• MM is a two digit month

• DD is a two digit day

• HH is a two digit hour value (use the 24 hour clock style)

• MM is a two digit minute value

• SS is a two digit second value

• - is the literal “-“ character separating the date parts

• T is the literal “T” character denoting the beginning of the time section

• : is the literal “:” character separating the time parts.

Solutions for this Challenge are in the “$POLICY_GUIDE/test_cases” directory.
Compare each of your requests with the corresponding solution. For example
compare Request-3-Challenge.xml with Request-3.xml.

3.2.6.3 Challenge: Create a XACML Policy for the Local Organization Source Directives

In the “$POLICY_GUIDE/policies/” directory, create a file called “Agency-A-Policy-
Challenge.xml”. Create the XACML policy in this file. Use the predicates in Table 2 as
a reference. Recall from the Lessons in Section 3.1 that a predicate in XACML can
take the form of a match-predicate or a rule <Condition>. A match-predicate
includes an attribute-reference, which can be an attribute-designator or an
<AttributeSelector>. Also, recall that a XACML policy can have a top-level <Policy>
or <PolicySet> element.

A solution to this Challenge is in Agency-A-Policy.xml in the
“$POLICY_GUIDE/policies/” directory.

3.2.6.4 Inspect Agency-A-Policy.xml

This policy has a top-level <Policy> element. All of the predicates are in the
<Target> of the <Policy>. It contains a single “Permit” <Rule> that has an empty
<Target>. Each predicate from Table 2 is represented by a match-predicate in
<Target> of the <Policy> as follows:

69 XACML uses the XML Schema format for the dateTime data type. See http://www.w3.org/TR/xmlschema-2/.

 66

• OD1P1 (Lines 22 – 26)

• OD1P2 (Lines 29 – 33)

• OD1P3 (Lines 36 – 41)

• OD1P4 (Lines 66 – 70)

• OD1P5 (Lines 48 – 52)

• OD1P6 (Lines 55 – 59)

3.2.6.5 Evaluate the Local Organization XACML Policy

First, confirm that evaluating the Agency-A-Policy against the provided requests
yield the expected results. Output each XACML response to a file named: “Request-
<test-case-number>_Agency-A-Policy_Reponse.xml” in the
“$POLICY_GUIDE/test_case_results/” directory. Confirm that each response has the
expected result as stated in Table 8.

Now, evaluate your Challenge policy against each of the provided requests. Output
each XACML response to a file named: “Request-<test-case-number>_Agency-A-
Policy-Challenge_Response.xml” in the “$POLICY_GUIDE/test_case_results/”
directory. Confirm that each response has the expected result as stated in Table 8.

Now, evaluate the provided policy against each of your Challenge requests. Output
each XACML response to a file named: “Request-<test-case-number>-
Challenge_Agency-A-Policy_Response.xml” in the
“$POLICY_GUIDE/test_case_results/” directory. Confirm that each response has the
expected result as stated in Table 8.

3.2.6.6 Challenge: Create a XACML Policy for the Federation Source Directives

In the “$POLICY_GUIDE/policies/” directory, create a file called “Federation-Policy-
Challenge.xml”. Create the XACML policy in this file. To handle predicates FD1P2,
FD1P6, and FD1P7, consider using a XACML regular expression function.

A solution to this Challenge is in Federation-Policy.xml.

3.2.6.7 Inspect Federation-Policy.xml

The implementation of predicates FD1P1 (Lines 20 – 24), FD1P3 (Lines 35 – 40),
FD1P4 (Lines 67 – 71), and FD1P5 (Lines 56 – 60) are the same as in Agency-A-
Policy.

 67

The implementation of predicate FD1P2 (Lines 27 – 32) uses the string-regexp-
match XACML function, which is a regular expression function70.

The implementation of predicates FD1P6 and FD1P7 is handled in a single match-

predicate (Lines 43 – 49) using the string-regexp-match function.

As stated in Lesson Step 3.2.3.2, directive FD1P8 will need to be implemented as a
condition. This condition is on Lines 85 – 93.

3.2.6.8 Evaluate the Federation XACML Policies

First, confirm that evaluating the Federation-Policy against the provided requests
yield the expected results. Output each XACML response to a file named: “Request-
<test-case-number>_Federation-Policy_Reponse.xml” in the
“$POLICY_GUIDE/test_case_results” directory. Confirm that each response has the
expected result as stated in Table 8. For the XACML response that have a “Permit”
decision, confirm that the proper obligation is present.

Now, evaluate your Challenge policy against each of the provided requests. Output
each XACML response to a file named: “Request-<test-case-number>_Federation-
Policy-Challenge_Response.xml” in the “$POLICY_GUIDE/test_case_results”
directory. Confirm that each response has the expected result as stated in Table 8.
For the XACML response that have a “Permit” decision, confirm that the proper
obligation is present.

Now, evaluate the provided policy against each of your Challenge requests. Output
each XACML response to a file named: “Request-<test-case-number>-
Challenge_Federation-Policy_Response.xml” in the
“$POLICY_GUIDE/test_case_results” directory. Confirm that each response has the
expected result as stated in Table 8. For the XACML response that have a “Permit”
decision, confirm that the proper obligation is present.

3.2.6.9 Strategy for Implementing the Supplemental Directives

The supplemental directives, SD1 and SD2, are obligations created by Agency-A to
supplement the federation directives. As such, and because we don’t want to edit the
federation XACML policy directly, we will create a new policy that (1) has a
<PolicySet> top-level element, (2) references the federation XACML policy, and (3)
implements directives SD1 and SD2.

70 Regular expressions in XACML are handled as specified in the W3C “XQuery 1.0 and XPath 2.0 Functions and
Operators” specification, located at http://www.w3.org/TR/2002/WD-xquery-operators-20020816.

 68

3.2.6.10 Challenge: Implement the Supplemental Directive Obligations

Recall from Lesson 3.1.8, when including XML element arguments inside of an
<AttributeAssignment> element, the author needs to replace all occurrences in the
argument of “<” with “<” and replace all occurrences of “>” with “>” (URL
encoding).

To ease the burden of directly authoring obligations using the URL encoding, first
author the obligations using the normal notation for XML elements. Create a file, in
the “$POLICY_GUIDE/policies” directory, named: “Supplemental-Obligations-
Challenge.xml”. Create a top-level <Obligations> element and specify the XACML
policy namespace as the default namespace. Create the implementations of SD1 and
SD2 within the top-level <Obligations> element.

To implement the ExpriationDate argument of the LogValidAccess obligation,
consider using the <Apply> element to specify a call to the date-add-
yearMonthDuration XACML function.71

A solution to this Challenge is in Supplemental-Obligations.xml. Inspect this file and
confirm that each <AttributeAssignment> element matches the appropriate
argument as stated in Table 4 and Table 5.

We will use this set of obligations in the full implementation of the supplemental
directives.

3.2.6.11 Inspect Supplemented-Federation-PolicySet.xml

Line 13 contains the reference to the federation XACML policy.

The obligations from Supplmental-Obligations.xml have been copied into this file
and all the occurrences of “<” and “>” inside all <AttributeAssignment> elements
have been replaced with their respective URL encodings.

3.2.6.12 The Complete Policy for the Sample Implementation

As stated in Section 2.3.1, Step 3A, an application should be supported exactly one
top-level policy. We will now create the top-level XACML policy for the sample
application.

This top-level policy needs to include the local organization XACML policy and the
supplemented federation policy. There are requests that will apply to both of these

71 Durations are handled in XACML as specified in the W3C XML Schema Part 2: Datatypes Second Edition
Sepcification, located at http://www.w3.org/TR/xmlschema-2/ and in the W3C XQuery 1.0 and XPath 2.0 Functions
and Operators specification, located at http://www.w3.org/TR/2002/WD-xquery-operators-20020816.

 69

subordinate policies. However, if a request applies to the local organization policy,
which essentially handles request from internal users, there is no need to process
any of the obligations. Therefore, we will use the first-applicable policy combining
algorithm to configure the top-level policy to have the PDP first evaluate the local
organization policy and then only evaluate the supplemented federation policy if
necessary.

The sample application is used to access criminal history data and any request to
access such data should be applicable to the top-level policy, before considering the
subordinate policies. Therefore, we will include a predicate in the <Target> of the
top-level <PolicySet> ensuring that the policy will only be applicable to requests to
access criminal history data.

With this policy configuration, there are requests that are applicable to the
<Target> of the top-level policy, but are not applicable to any of the subordinate
policies. These requests will cause the top-level policy to evaluate to
“NotApplicable”. This is misleading, as these requests should theoretically be
applicable to the top-level policy, and the top-level policy should evaluate to “Deny”
for these requests. To achieve this, we will include a third subordinate policy, placed
at the end of the top-level policy, which denies all requests. Therefore, if the sample
application supplies a request to access criminal history data, and the first two
subordinate policies are not applicable to that request, then the top-level policy will
return a decision of “Deny” instead of “NotApplicable”.

The top-level sample application policy is implemented in Sample-Application-
Policy.xml. Open this file. The predicate for ensuring that requests are for accessing
criminal history data is on Lines 13 – 17. Line 22 contains the reference to Agency-
A-Policy. Line 24 contains the reference to Supplemented-Federation-Policy. The
deny policy is on Lines 26 – 31.

3.2.6.13 Testing the Sample Application Policy

We will now re-examine the six test cases and discern their effects on the evaluation
of the sample application policy. Table 9 shows the expected result of the sample
application policy when evaluated against each test case request.

 70

Test Case # Requestor

Id

Record Id Sample Application

Policy Evaluation

Obligations

1 xu01 Record-1 Deny N/A

2 xu02 Record-2 Permit N/A

3 xu03 Record-2 Permit N/A

4 xu04 Record-1 Deny N/A

5 xu05 Record-1 Deny N/A

6 xu05 Record-2 Permit All

Table 9: The Effects of the Test Cases on the Sample Application Policy

While the XACML specification allows policy references, it does not specify how
policy references are to be resolved. Fittingly, SunXACML supplies a mechanism for
developers to provide a module that resolves policy references and we have
developed such a module. We use a SunXACML XML configuration file
(“SunXACMLConfig.xml” in the “$POLICY_GUIDE/policies/” directory) to instruct
SunXACML to use Sample-Application-Policy.xml as the top-level policy and to use
our module for resolving policy references. The policy reference module also has its
own configuration file (“ReferencePolicyFinderConfig.xml” in the
“$POLICY_GUIDE/policies/” directory). Details on how to invoke the SimplePDP
using a configuration file is in Appendix A: Common Tasks. A more detailed
description of how the SunXACML configuration and policy reference module
configuration files are used is in Lesson Step 3.3.2.1.

Now evaluate the sample application policy against each test case request and
output the XACML response to a file named “Request-<test-case-number>_Sample-
Application-Policy_Response.xml. Confirm that the actual results are the same as
those in Table 9.

3.3 The Sample Implementation Components

This Lesson Group contains Lessons that cover the functionality, configuration, and
integration details of the components of the sample implementation.

3.3.1 Overview of the Sample Implementation

Goals:

1. Understand the sample implementation architecture.
2. Understand how the sample implementation uses GFIPM Web Services.
3. Understand how the sample implementation software is packaged.

 71

Summary:

In this Lesson, we provide an overview of the design and structure of the sample
implementation. We describe how the sample implementation architecture maps to
the XACML reference architecture. We provide an overview of the GFIPM Web
Services User-Consumer-Provider Service Interaction Profile, which is used by the
sample implementation. Finally, we describe how the sample implementation
software is organized and packaged.

Steps:

3.3.1.1 The Sample Application Architecture and Design

The sample application is written in Java, and includes a consumer and a provider of
a GFIPM Web Service. It runs in the Glassfish application server and makes use of an
operational GFIPM Identity Provider service running in the GFIPM Reference
Federation. Figure 11 depicts the architecture of the sample application, and Table
10 maps the sample application components to the XACML reference architecture.

Figure 11: Sample Application Architecture

 72

XACML Reference

Architecture

Component(s)

Sample Implementation

Component(s)

Description

Requestor User, Browser, Identity

Provider (IDP), Web

Service Consumer (WSC)

The User connects to the WSC

Web Portal via a Browser. The

WSC makes a Web Service call to

the WSP on behalf of the User

using attributes provided from the

IDP.

PEP Web Service Provider

(WSP)

The WSP is the GFIPM Web

Service Provider and enforces

access control decisions made by

the PDP

Resource XML Data (Flat Files) The WSP reads the XML data files

directly from disk.

Obligations Handlers Obligation Handlers There is a handler component for

each obligation present in the

sample implementation XACML

policy.

PDP PDP, PDP Configuration The sample application PDP uses

the SunXACML library.

Policy Repository XACML Policy (Flat File) The PDP reads the XACML Policy

directly from disk.

PAP, PIP,

Supplemental

Attribute Authorities

N/A These components are not

included in the sample

application.
Table 10: Mapping of the Sample Application Architecture to the XACML Reference Architecture

3.3.1.2 GFIPM Web Services

GFIPM Web Services (GFIPM-WS) is defined by the System-to-System Profile of
GFIPM. It is a normative technical specification containing a set of profiles that
enable secure, interoperable, standards-based SOAP web services communication
within a GFIPM federation.

One of the profiles described in the GFIPM-WS System-to-System Profile is called the
GFIPM-WS User-Consumer-Provider SIP. It is designed to apply to any information
exchange scenario in which a Web Service Consumer (WSC) interacts with a Web
Service Provider (WSP) on behalf of a user. This scenario can occur whenever a user
interacts with an application that requires user identity information for the purpose
of access control, auditing, etc. This SIP is often applied to a scenario in which a web
portal serves the requests of its authenticated users by performing back-end web
services transactions on behalf of those users, as done by our sample

 73

implementation. A high-level description of this SIP’s behavior and message flow is
as follows. Numbered steps in the description below correspond to the steps
depicted in Figure 12.

Step 1: The (yet-to-be-authenticated) user browses to the web portal (also
acting as the WSC) using a web browser, and the WSC authenticates the user.
The authentication event is outside the scope of the GFIPM-WS User-
Consumer-Provider SIP; however, since the basic GFIPM paradigm is built on
the concept of federated identity management, authentication of the user to
the web portal often requires the use of a GFIPM Identity Provider service,
and is typically performed using the GFIPM Web Browser User-to-System
Profile.72

Steps 2-3-4: The web portal (WSC) performs a web services transaction with
a WSP on behalf of the user, using a SAML assertion issued and signed by the
user’s IDP to fulfill the WSP’s requirement for attributes about the user.73
During this transaction, the WSP uses the attributes in the SAML assertion to
make a policy decision about whether to release the requested data to the
WSC.

Step 5: The WSC presents the results to the user, if the WSP released the
data.

Figure 12: GFIPM Web Services User-Consumer-Provider SIP

72 For more information, see http://it.ojp.gov/docdownloader.aspx?ddid=1336.
73 This description omits certain details about how the WSC obtains a SAML assertion that is suitable for presentation
to the WSP. For more information, please see Section 8.8 (“GFIPM-WS SAML Assertion Delegate Service SIP”) of
the GFIPM Web Services System-to-System Profile.

 74

This project uses the Java reference implementation of GFIPM Web Services, which
is based on the Metro Java project74, which is the reference implementation of the
Java API for XML-Based Web Services (JAX-WS) specification75.

3.3.1.3 The Sample Implementation Software Project Structure

The sample implementation consists of two parts: (1) the sample information-
sharing web service application; and (2) the consumer of the web service
application.

The information-sharing application includes a GFIPM Web Service Provider (WSP)
which is the PEP of the XACML architecture. The WSP provides a service that allows
consumers to retrieve arrest records. The application uses the SunXACML PDP and a
set of Obligation Handlers.

The consumer of the application is a web portal that has a GFIPM Web Service
Consumer (WSC) module. The web portal provides a web interface that allows users
to (1) select an arrest record to retrieve, and (2) read the contents of retrieved
arrest records. The web portal uses the WSC to communicate with the WSP. The
web portal authenticates GFIPM Reference Federation users against the GFPIM
Reference Identity Provider (IDP)76. The users specified in the test cases of Lesson
3.2.5 have been provisioned in the GFIPM Reference IDP.

The sample implementation is packaged as a series of binary and Apache Maven77
(referred to herein as Maven) modules in the “$SAMPLE_IMPL/” directory. The
binary modules provide functionality necessary to run the sample implementation,
but the details of their structure are not important to this guide. Each Maven module
contains the source code of the module and the remaining Lessons will explore the
details of these modules. Table 11: List of Sample Implementation Modules contains
a description about each module.

74 See http://jcp.org/en/jsr/detail?id=224.
75 See http://jax-ws.java.net/.
76 Authentication is performed using the GFIPM Web Browser User-to-System Profile. For more information, see
http://it.ojp.gov/docdownloader.aspx?ddid=1336.
77 Apache Maven is a software project management and comprehension tool. See http://maven.apache.org/.

 75

Module

Name

Type Location ($LABEL) Description

STS/ADS Binary

Module

m2sts.war A module required by GFIPM

Web Services

SunXACML Binary

Module

sunxacml.jar The SunXACML library

Obligations Maven

Module

obligation/

($OBLG_PRJ)

Core obligation handling

functionality

SunXACML

Modules

Maven

Module

ImplGuideSunXACML/

($SX_MOD_PRJ)

Modules that support the

SunXACML functionality

WSLib Binary

Module

wslib.jar Core web service configuration

and functionality

WSC Maven

Module

wsc/ ($WSC_PRJ) The WSC/Web Portal

implementation

WSP Maven

Module

wsp/ ($WSP_PRJ) The WSP implementation

Table 11: List of Sample Implementation Modules

The locations are relative to the “$SAMPLE_IMPL” directory. The label for each
Maven module is listed in parenthesis after the location. Details on building,
installing, and deploying these modules are in Appendix A: Common Tasks.

The XML data resources developed in the test cases of Lesson 3.2.5 have been
copied into the WSP project at the $WSP-PRJ/src/main/webapp/META-
INF/records directory. The sample implementation XACML policies that were
developed in Lesson 3.2.6 have been copied into the WSP project at the $WSP-
PRJ/src/main/webapp/META-INF/policies directory78.

3.3.2 Implementation of the Policy Services

Goals:

1. Understand how the SunXACML PDP is configured.
2. Understand how the Obligation Handlers are implemented.

Summary:

In this Lesson, we explore the configuration and details of the policy services
components that were implemented- the PDP and Obligation Handlers.

Steps:

78 The configuration files are different since the sample application runs in a web application context.

 76

3.3.2.1 PDP Configuration

The SunXACML library includes a PDP module that can be programmatically used by
a Java application. The SunXACML PDP module needs to be supplied with modules
for retrieving the XACML policy (or policies) that the PDP will evaluate- these
modules are called “policy finder modules”. There are two types of policy finder
modules. The first type, which we’ll call “context policy finder modules”, will be
asked to supply a single policy based on a XACML request that the PDP needs to
evaluate. The second type, which we’ll call “reference policy finder modules”, will be
asked to supply a single policy based on a policy reference. Also, the PDP will need
to be supplied with modules that can retrieve the values for (1) attributes
referenced by <AttributeSelector> elements and (2) supplemental attributes-
these modules are called “attribute finder modules”.

The PDP can be configured with a SunXACML XML configuration file79. The
configuration file allows an administrator to specify the policy and attribute finder
modules that the PDP will use. The configuration file also allows an administrator to
instruct the PDP to use modules that implement extensions to the XACML standard;
extensions can consist of implementations of non-standard datatypes, combining
algorithms, or functions.

The WSP Project uses the SunXACML configuration file located at
“$WSP_PRJ/src/main/webapp/META-INF/policies/SunXACMLConfig.xml”. This
configuration file specifies the use of two policy finder modules and a single
attribute finder module. The first policy finder module (Lines 6 – 11) is the
org.gtri.icl.iead.policy_guide.sunxacml.ReferencePolicyFinderModule Java class; this
is a reference policy finder module that is in the $SX_MOD_PRJ module. This class
needs to be initialized with the “UseServletContext” flag, the path to where the
referenced policies reside, and the path to its own configuration file that maps
policy identifiers to file paths (Lines 8 - 10).

The second policy finder module (Lines 12 – 17) is the
org.gtri.icl.iead.policy_guide.sunxacml.WSFilePolicyModule; this is a context policy
finder module that is in the $SX_MOD_PRJ module. This class needs to be initialized
with the “UseServletContext” flag and a list of files containing XACML policies (see
Lines 13 – 16). For a given XACML request, the WSFilePolicyModule will find a
single applicable policy from the list; otherwise it will throw an error. In this
configuration file, it is initialized with a single policy- the sample implementation
policy (Line 15). The SunXACML library already contains a module for retrieving
policies from files on the local file system80. However, the WSP executes within a
Java servlet context and the built-in SunXACML module will not work in this context.

79 This is the same configuration file format that was used for the SunXACML SimplePDP module in Lesson 3.2.6.
The SimplePDP Java class is an extension of the SunXACML PDP that allows the PDP to be used via a command line.
80 This module is the com.sun.xacml.finder.PolicyFinderModule Java class.

 77

The attribute finder (Line 18) is the built-in SunXACML
com.sun.xacml.finder.impl.SelectorModule Java class. It is used to evaluate
<AttributeSelector> elements.

Lines 20 - 23, of the configuration file, instruct the SunXACML library to use the
standard XACML datatypes, combining algorithms, and functions.

3.3.2.2 The Obligation Handlers

The sample implementation policies include two obligations: NotifyViaEmail and
LogValidAccess. We have developed a separate Java class for handling each of those
obligations. These are the NotifyViaEmailImpl and LogValidAccessImpl Java classes
in the org.gtri.icl.iead.policy_guide.obligation Java package in the $WSP_PRJ module.

Our obligation design allows the use of XACML attribute-expressions in obligation
arguments81. Any attribute-expressions in an obligation need to be resolved into
literal values before the obligation can be fulfilled. We designed the obligation
handler implementations to operate on arguments that have been resolved. We
have developed an “obligation handler wrapper” class82 that uses the modules of the
SunXACML library to evaluate the attribute-expressions of obligation arguments83.

The WSP associates each instance of each obligation handler implementation with a
separate instance of the wrapper class. To fulfill an obligation, the WSP asks the
appropriate wrapper to fulfill the obligation, the wrapper resolves any attribute-

expressions, and then the wrapper provides its associated obligation handler with
the resolved arguments to fulfill the obligation. In XACML 3.0, the resolution of
attribute-expressions in obligation arguments can be handled by the PDP, and our
obligation handler wrapper may not be needed.

3.3.3 The GFIPM WSP / PEP

Goals:

1. Understand the service interfaces and functionality of the WSP.

Summary:

81 The use of attribute-expressions in obligation arguments provides the basis for the fulfillment of the “entity
resolution” architectural requirement discussed in Section 2.3.1 Step 6(B).
82 This is the org.gtri.icl.iead.policy_guide.obligation.ObligationHandlerWrapper class in the $OBLG_PRJ module.
83 We had to make a very small change to the SunXACML library to allow it to support this functionality. The sample
implementation includes this modified SunXACML library and does not include the library provided by Sun/Oracle.
The library provided directly by Sun/Oracle can support the entire functionality of the sample implementation except
the obligation handlers.

 78

In this Lesson, we will describe the configuration and functionality of the WSP / PEP
component and describe how it interacts with the Obligations Handler and the PDP.

Steps:

3.3.3.1 WSP Implementation

The org.gtri.icl.iead.policy_guide.service.SampleWebServiceImpl class implements
the actual web service read operation. On receipt of a read service request, this class
performs the following steps.

1. Uses the DataAdapter class to retrieve the requested arrest record.

2. Builds a XACML request based on the user’s SAML assertion, and the
retrieved arrest record (See Lesson Step 3.3.3.2).

3. Obtains an access control decision (XACML response) from the PDP. To do

this, the WSP first initializes the PDP using the SunXACML configuration file84
(see Lesson Step 3.3.2.1). Then the WSP invokes the “evaluate” method on
the PDP.

4. Checks to see if the XACML response is valid, i.e., it has a status of “ok”. If the

status is not “ok”, then a fault85 is returned to the requestor. If the status is
“ok”, then processing continues.

5. Checks to see if the XACML decision is “Indeterminate”. If the decision is
“Indeterminate”, then a fault is returned to the requestor, otherwise
processing continues.

6. Processes obligations. For each obligation received in a XACML response, the
WSP identifies the appropriate obligation handler wrapper based on the
obligation ID, and passes the obligation to that wrapper for fulfillment. The
wrapper resolves all obligation arguments and provides the resolved
arguments to its associated obligation handler for fulfillment. If any
obligation is not fulfilled, then the WSP returns a fault to the service
requestor.

7. Adds the XACML request and response (for demo purposes) to the service
response.

8. Enforces the XACML decision. If the decision is “Permit”, then the arrest
record is added to the service response. If the decision is not “Permit” (it is

84 In a production system, the WSP may have no knowledge of the PDP configuration. The configuration of the PDP
can occur via a separate mechanism.
85 A fault is a SOAP-based web service message that encodes server-side error conditions.

 79

either “Deny” or “NotApplicable”), then the arrest record is not added to the
service response.

9. Return the service response to the requestor.

If any other errors or exceptions are caught during the processing of these steps,
then a fault is returned to the requestor.

3.3.3.2 Building the XACML request

Building the XACML request involves creating attributes for the Subject, Resource,
Action, and Environment classes based on the received service request and the
requested data record. Subject attributes are created from the SAML assertion that
was received with the service request. Resource, Action, and Environment attributes
are generated by the WSP based on the contextual details of the service request.

Creating the Subject attributes from the SAML assertion

The SAML assertion will contain a list of GFIPM user attributes pertaining to the
requestor. The WSP converts each SAML attribute into a XACML Subject attribute
and inserts this XAML attribute into the XACML request. Figure 13 shows an
instance of the Sworn Law Enforcement Officer Indicator GFIPM attribute as it
would appear in a SAML assertion. Figure 14 shows the same attribute as it would
appear in a XACML request.

Figure 13: Example GFIPM Attribute in SAML

 80

Figure 14: GFIPM Attribute Converted from SAML to XACML

The Name XML attribute within the SAML <saml2:Attribute> element maps to the
AttributeId XML attribute with the XACML <xacml-ctx:Attribute> element. While a
NameFormat XML attribute is present in the SAML <saml2:Attribute> element, all
XACML AttributeId XML attributes are of type URI.

In GFIPM Web Services, every SAML user attribute has a datatype of “xs:string”
(where the “xs” prefix denotes the XML Schema namespace). XACML uses a different
format for datatypes. Also, our implementation sets the datatype for each GFIPM
attribute in XACML according to the type of the attribute as defined in the GFIPM
Metadata Specification. Table 12 contains a mapping from GFIPM Metadata type to
XACML datatype. Note that the GFIPM Metadata type of the Sworn Law Enforcement
Officer Indicator attribute is “Boolean”.

GFIPM Metadata

Type

XACML Datatype

Boolean http://www.w3.org/2001/XMLSchema#boolean

Date http://www.w3.org/2001/XMLSchema#date

URI http://www.w3.org/2001/XMLSchema#anyURI

Base-64 Binary http://www.w3.org/2001/XMLSchema#base64Binary

[all other types] http://www.w3.org/2001/XMLSchema#string

Table 12: Mapping from GFIPM Metadata Type to XACML Datatype

Creating the Resource, Action, and Environment attributes

The WSP generates the Resource, Action, and Environment attributes according to
Table 13.

 81

Class Attribute ID Value

Resource XACML resource-id The value of the “ID” parameter

of the Read service request.

Resource GFIPM Criminal History Data

Indicator

“true”

Action GFIPM Action Type “Read”

Environment XACML current-dateTime The date and time at which the

service request was received by

the WSP implementation.
Table 13: Resource, Action and Environment Attributes used in the Sample Implementation

Finally, the WSP adds the retrieved arrest record to a <ResourceContent> element
in the Resource class of the XACML request.

3.3.4 The WSC / Web Portal and Test Cases

Goals:

1. Understand the functionality of the sample implementation Web Portal /

WSC.
2. Manually execute the test cases described in Table 9 on the sample

implementation.
3. Understand how to configure an automated testing module.

Summary:

In this Lesson, we will describe the functionality of the Web Portal / WSC, the user
interface it provides, and how it uses the WSP. We will describe the necessary steps
for manually testing the end-to-end functionality of the sample implementation,
using the test cases described in Table 9. Finally, we describe how configure test
cases to be executed automatically.

Steps:

3.3.4.1 WSC/Web Portal Implementation

The Web Portal consists of a set of JSP86 files in the “$WSC_PRJ/src/main/webapp/”
directory that provide the web user interface. The interface is supported by Java
classes in the org.gtri.icl.iead.policy_guide.portal Java package.

86 See http://www.oracle.com/technetwork/java/javaee/jsp/index.html.

 82

The WSC functionality is contained in the org.gtri.icl.iead.policy_guide.wsc Java
package. It relies on the WSLib module to perform the actual web service
communications.

3.3.4.2 Execute the end-to-end test cases

Table 14 contains the test case information from Table 9, except that the Username
of the user account is listed instead of the Federation ID. Also, the fourth column has
been renamed.

Test

Case #

Username Record Id Access Control

Decision

Obligations

1 XACML Agency-A

Test User 1

Record-1 Deny N/A

2 XACML Agency-A

Test User 1

Record-2 Permit N/A

3 XACML Agency-A

Test User 2

Record-2 Permit N/A

4 XACML Agency-A

Test User 3

Record-1 Deny N/A

5 XACML Agency-B

Test User 1

Record-1 Deny N/A

6 XACML Agency-B

Test User 2

Record-2 Permit LogValidAccess,

NotifyViaEmail
Table 14: Sample Implementation Test Cases

There are six test cases. Each test case expresses a user requesting to retrieve an
arrest record. For each combination of username and record ID, perform the steps
below to execute the test cases.

1. From the virtual machine, or from a computer that can access the virtual
machine over a network, open a browser and browse to the Web Portal at
$WEBPORTAL-URL. Your browser should be redirected to the GFIPM
Reference Federation Discovery Service web page at http://ref.gfipm.net.

2. Select the entry that reads: “(Public) GFIPM 2.0 Reference IDP”. Click the
Select button.

3. Your browser should be redirected to the GFIPM Metadata 2.0 Reference

Identity Provider at https://idp.ref.gfipm.net/idp/. This site allows the user
to select a GFIPM Reference Federation user account with which to
authenticate. There are different groups of accounts. The accounts in the
group labeled: “The following test accounts are for use with the XACML

 83

Training Toolkit” were provisioned for use with this Implementation Guide.
From this group, select the appropriate username that corresponds to the
current test case. Click Login.

4. Your browser should be redirected back to the sample implementation web
portal. Note that there is a link to view the SAML assertion of the
authenticated user account. There should be a text box labeled: “Enter a
record ID to read”. Enter the ID of the arrest record that corresponds to the
current test case. Click Submit.

5. The web portal will use the WSC to retrieve the requested arrest record.
When this is done, the web portal will display links to the following data:

a. The requested arrest record if the service request was successful and
the service request was permitted by the policy framework.

b. The XACML request that was created and used by the WSP to obtain
the access control decision.

c. The XACML response generated by the PDP containing the access
control decision.

6. Verify that these data items are correct. The arrest record, if it is available,

should contain the information as shown in Table 7. The XACML response
should contain the decision and obligations as shown in Table 14. Compare
the XACML request with the SAML assertion of the authenticated user
account; also check the value of the XACML current-dateTime attribute.

3.3.5 Modification Points of the Sample Implementation

Goals:

1. Understand how to make modifications to the sample implementation.

Summary:

In this Lesson, we will describe how to make the following modifications to the
sample implementation:

• Editing and adding XACML policies in the WSP.

• Creating a new obligation handler.

• Creating new data records.

Steps:

3.3.5.1 Edited and adding policies

If you change the name of a policy, you’ll have to make the appropriate name
changes in the $WSP_SX_CONFIG file and the $WSP_RFP_CONFIG file.

 84

If you add a new sub-policy that’s referenced by the top-level policy, then you will
have to add a new entry in the $WSP_RFP_CONFIG file.

If you edit or add a policy in the WSP, then you will have to re-build and re-deploy
the WSP project to use the updated/new policy.

3.3.5.2 Creating obligation handlers

Every obligation handler must be a Java class that extends the
org.gtri.icl.iead.policy_guide.obligation.ObligationHandler class that’s in the $OBLG
module. We recommend you put your new obligation handler in the
org.gtri.icl.iead.policy_guide.obligation package in the $WSP_PRJ module (if you
don’t then you’ll have to make sure your obligation handler is on the Java classpath
of the WSP).

Also, you must add the appropriate entry in the WSP’s obligation handler
configuration file ($WSP_OH_CONFIG). This file contains a mapping from obligation
ID to obligation handler class name and tells the WSP which obligation handler to
use for a given obligation ID.

3.3.5.3 Creating new data records

Every data record must conform to the schema in the
$POLICY_GUIDE/arrest_record_iepd/exchangeSchema.xsd file. The ID of the record
must be put in the “s:id” XML-attribute of the “ext:Arrest” element. The record must
be saved in a file whose name is the record ID appended with the “.xml” extension.
The record must be saved in the $WSP_PRJ/src/main/webapp/META-INF/records/
directory and it must have a record ID distinct from any existing records in that
directory.

 Analysis and Discussion of Sample Implementation 4

This Section provides analysis and discussion about the various architectural and
implementation decisions made for the sample implementation developed in
Section 3, and how they would likely differ from the decisions made for a
production-grade implementation based on the requirements of the XACML
Reference Architecture described in Section 2.

As a primer for this discussion, please review Table 15 below. For each component
within the XACML Reference Architecture, Table 15 provides the implementation
technique used to build it within the sample implementation as well as a list of
implementation techniques that could be used to build it within a production
system.

 85

Component Name Implementation

Technique in Sample

Likely Implementation

Techniques in Production

Requestor GFIPM Web Services
Consumer (WSC)

• GFIPM WSC

• Non-GFIPM WSC

• Web Browser

PEP GFIPM Web Services
Provider (WSP)

• GFIPM WSP

• Non-GFIPM WSP

• Web Application

PDP Library within PEP • Standalone Web Service

• Other Standalone Service

Resource Flat File(s) on Local File
System

• Database Server

• Flat File(s) on Local File
System

• Standalone Web Service

• Other Standalone Service

PIP N/A (Not Part of Sample) • Standalone Web Service

• Other Standalone Service

Supplemental Attribute
Authority (SAA)

N/A (Not Part of Sample) • GFIPM WSP

• GSA Backend Attribute
Exchange (BAE) WSP

• Other WSP

Obligation Handler Library within PEP • Standalone Web Service

• Other Standalone Service

• Library within PEP

Policy Repository Flat File on Local File
System

• Database Server

PAP N/A (Not Part of Sample)

87
• Web Application

• Standalone Application
Table 15: Implementation Techniques by Component

The remainder of the section contains a brief analysis of selected XACML Reference
Architecture requirements from Section 2. For each requirement that we discuss
here, we provide: (1) a brief review of the requirement, (2) a brief description of
whether and how the requirement is met by the sample implementation, and (3) a
brief discussion of how the requirement can or should be met within a production
environment.

4.1 Requirement for Secure Communications Channels

87 Within the sample implementation, the PAP is represented via a text editor that edits a policy file.

 86

In a production environment, all communication channels between components
within the architecture must be secured from the fundamental security threats of
eavesdropping and tampering. This includes the channels between each of the
following pairs of components.

1. Requestor and Policy Enforcement Point (PEP)
2. PEP and Policy Decision Point (PDP)
3. PEP and Resource
4. PDP and Policy Information Point (PIP)
5. PIP and Supplemental Attribute Authorities (SAAs)
6. PEP and Obligation Handlers
7. Policy Administration Point (PAP) and Policy Repository
8. PDP and Policy Repository

Table 16 lists each pair of components. For each pair of components, it denotes the
strategy used to secure the channel between the components in the sample
implementation, and it also lists one or more strategies that can be used to secure
the channel in a production implementation. The list of recommended strategies for
a production environment is not exhaustive.

Pair of

Components

Channel Security Strategy in

Sample Implementation

Recommended Channel

Security Strategies in

Production

Requestor and
PEP

GFIPM Web Services • GFIPM Web Services

PEP and PDP Colocation in Same Process
Space

• Enterprise PKI

• Private Network

• Colocation on Same Host

PEP and Resource Colocation on Same Host • Resource-Based Security88

• Colocation on Same Host

PDP and PIP N/A (No PIP in Sample) • Enterprise PKI

• Private Network

• Colocation on Same Host

PIP and SAAs N/A (No PIP or SAAs in
Sample)

• GFIPM Web Services

• GSA Backend Attribute
Exchange (BAE)

PEP and
Obligation
Handlers

Colocation in Same Process
Space

• Enterprise PKI

• Private Network

• Colocation on Same Host

PAP and Policy
Repository

N/A (No PAP in Sample) • Resource-Based Security

• Colocation on Same Host

88 “Resource-Based Security” refers to a security scheme in which the resource itself is a service that supports secure
communication with authorized clients. A common example of this type of resource is an Oracle or MySQL database
server.

 87

PDP and Policy
Repository

Colocation on Same Host • Resource-Based Security

• Colocation on Same Host
Table 16: Communication Channel Security Strategies

Note the recommendation to use GFIPM Web Services for the channels between
Requestor and PEP and between PIP and SAAs. We recommend the use of GFIPM
Web Services for these channels because it not only provides a robust inter-
enterprise trust framework that forms a basis for cryptographically secure
communication channels, but also supports federated identity and attribute-based
privilege management for both users and non-users, via a well-defined set of
attributes. You may choose not to use GFIPM for securing these channels, but if so
then you will likely need to solve most or all of the problems for which GFIPM
already provides a complete, cohesive solution.

4.2 Requirement for Trusted Requestor Attributes

As noted in Section 2, the PEP must understand and trust the attributes that it
receives from the Requestor. The sample implementation satisfies the “trust”
requirement by leveraging a trusted 3rd party (the user’s identity provider) from the
GFIPM Trust Fabric, which is a robust trust framework that is suitable for a
production environment. In addition, the sample implementation satisfies the
“understand” requirement via the use of attributes, that have syntactically and
semantically precise definitions, from (1) the XACML 2.0 Spec, which defines
attributes that may generically apply in any access control scenario, and (2) the
GFIPM Metadata Spec, which defines attributes that are pertinent within the law
enforcement community. The sample implementation therefore satisfies the PEP’s
requirement for trusted Requestor attributes at a level that is suitable for
production. You may chose not to leverage these GFIPM work products in a
production implementation, but if so then you need to find an alternate means of
satisfying this requirement.

4.3 Requirement for a Common Interface Between Requestor and PEP

The API exposed by a PEP typically needs to include low-level communication
protocol standards (e.g. TLS, HTTP, and SOAP) as well as application-level service
descriptions and data formats (e.g. WSDL, NIEM IEPDs, etc.) The sample
implementation meets these needs via the GFIPM Web Services spec, an application-
specific service specification defined via WSDL, and a sample NIEM IEPD to define
the data payload. The sample IEPD used within the sample implementation is not an
actual IEPD, but it is similar in structure and format to an actual IEPD. A typical
production system would use GFIPM Web Services or a similar protocol stack. The
service interface and data payload formats would of course depend on the specific
nature of the application service exposed by the PEP.

 88

4.4 Requirement for Translation from Application Environment to XACML

The translation process from the application environment to XACML is essentially a
process of mapping attributes from the application’s domain language to the
appropriate XACML attributes. This mapping process differs slightly for each type of
XACML attribute. For XACML subject attributes, the sample implementation
harvests the necessary attribute data from the SAML assertion it receives from the
Requestor. For XACML action attributes, the PEP typically generates the attribute
values based on the type of request made by the Requestor (e.g. read, write, etc.)
and various metadata about that request (e.g. IP address, geo-location of requestor,
etc.) For both subject attributes and action attributes, a typical production
implementation would work in a manner very similar to the sample
implementation. XACML resource attributes depend heavily on the properties of the
resource protected by the PEP. The sample implementation uses a relatively small,
simple set of resource attributes. In a production environment, the set of resource
attributes would typically be larger, but similar in style to those used by the sample
implementation. XACML environment attributes can be retrieved either from
trusted sources within the local host system (e.g. date and time) or from trusted
external attribute services (e.g. weather conditions). The sample implementation
retrieves the value of a date-time environment attribute from the local host system.
In a production system, the implementation of environment attribute collection
would depend on the nature of available attribute sources, from either the local host
system or other trusted data sources via a network.

4.5 Requirement for an Accurate and Efficient Attribute Retrieval Algorithm

As stated in Section 2, the PIP must implement an accurate and efficient attribute
retrieval algorithm, so it can determine which SAA to contact for any given attribute,
and dispatch the attribute request appropriately. Retrieval of supplemental
attributes by a PIP is outside the scope of the sample implementation. This is a very
broad and complex topic due to the trust implications of retrieving attributes from
sources that are outside the trust perimeter of the enterprise. Implementation of
attribute retrieval in a production environment is therefore highly dependent on the
surrounding context, including security, trust, and availability of supplemental
attribute sources. BAE and GFIPM are both good starting points for a SAA
framework. Any further discussion of this topic is outside the scope of this guide.

4.6 Requirement for Proper Resolution of Entities Specified in Obligations

Section 2 notes that an Obligation Handler must be able to accurately resolve the
identity and location of entities referenced within obligations, based on the context
provided to it by the PEP. For example, if an obligation says: “The owner of a data

 89

resource must be notified via email upon every access to that resource”, then the
Obligation Handler must be able to resolve the email address of the owner of the
data resource.

In the sample implementation, entity resolution is handled in the obligation
specifications in the policy. The arguments of the obligations contain the XACML
elements necessary to properly resolve the data needed by the Obligation Handlers.

The approach taken in the sample implementation is just one paradigm for
achieving proper entity resolution. This approach should be suitable for many
production environments in which the resolution details for each obligation are
known by the policy author at the time the policy is created. There are no other
well-known approaches for meeting this requirement. However, this problem is
currently being explored by the Global Federated Identity and Technical Privacy
Task Team.

4.7 Requirement for a Processing Model to Handle “Out-of-Band” Obligations

As discussed in Section 2, there exist certain “out-of-band” obligations that an entity
other than the PEP is required to fulfill. An example of an “out-of-band” obligation is:
“The data requestor must not further disseminate the data upon receiving it”.

The sample implementation does not contain any out-of-band obligations. There are
currently no well-known approaches for processing out-of-band obligations, but this
issue is under investigation by the Global Federated Identity and Technical Privacy
Task Team.

 Further Reading 5

This section provides a list of resources for further reading about topics covered in
this guide as well as other related topics.

Technology Standards and Paradigms

eXtensible Access Control Markup Language (XACML)
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

Security Assertion Markup Language (SAML)
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

Global Justice Information Sharing Initiative
http://www.it.ojp.gov/global

Global Federated Identity and Privilege Management (GFIPM)
http://gfipm.net/

 90

SOAP
http://www.w3.org/TR/soap/

REST
http://en.wikipedia.org/wiki/Representational_state_transfer

XML
http://www.w3.org/XML/

JAX-WS
http://jcp.org/en/jsr/detail?id=224

Open Source and Vendor Software Implementations

SunXACML
http://sunxacml.sourceforge.net/

Axiomatics
http://www.axiomatics.com/

BiTKOO
http://www.bitkoo.com/

Jericho Systems
http://www.jerichosystems.com/

Holistic Enterprise-Ready Application Security Architecture Framework (HERAS-
AF)
http://www.herasaf.org/

Java
www.java.com/

Glassfish
http://jax-ws.java.net/

Metro
http://metro.java.net/

Apache Maven
http://maven.apache.org/

 91

Appendix A: Common Tasks

Executing SimplePDP

Prerequisites:

1. Install the Dependency Libraries.

Steps:
Invoke Java, with the following arguments:

• The classpath needs to include the following:
o the SunXACML library (see Installing the Dependency Libraries)

• The main class is “com.sun.xacml.support.SimplePDP”

• The arguments to the main class are
“<path/to/request-file> <path/to/policy-file>” replacing “<path/to/request-file>”
with the path to the file that contains the XACML request and replacing
“<path/to/policy-file> with the path to the file that contains the XACML policy.

The following steps explain how to do this on the virtual machine:

1. Open a terminal.
2. Enter the following command.

“java –cp /home/guide/policy_guide/sample_impl/sunxacml/sunxacml.jar
com.sun.xacml.support.SimplePDP <path/to/request-file> <path/to/policy-file>”

Replace “<path/to/request-file>” with the path to the file that contains the XACML
request and replacing “<path/to/policy-file> with the path to the file that contains
the XACML policy. Be sure to not hit the enter key until the entire command is typed
into the terminal.

If you want to output the XACML response to a file, then add the following to the end
of the above command (be sure to first type a space):
“ > <path/to/response-file>” replacing “<path/to/response-file>” with the path to
the file that will contain the XACML response.

While you are going through Lesson Group 3.1, we suggest you enter this command
from the directory that corresponds to the particular lesson in which you are
currently working.

The end

Executing SimplePDP (with a Configuration File)

Prerequisites:

1. Install the Dependency Libraries.

 92

Steps:
Invoke Java, with the following arguments:

• The classpath needs to include the following:
o the SunXACML library (see Installing the Dependency Libraries)
o the SunXACML module library (see Installing the Dependency

Libraries)
o the Java EE 6 library (this is needed by the Policy Reference Module

and gets installed automatically when the Dependency Libraries are
installed)

• The “com.sun.xacml.SunXACMLConfigFile” environment variable needs to be
set to the path to the SunXACML configuration file.

• The main class is “com.sun.xacml.support.SimplePDP”

• The arguments to the main class are “-config <path/to/request-file”>
replacing “<path/to/request-file>” with the path to the XACML request file
you want to evaluate.

The following steps explain how to do this on the virtual machine:

3. Open a terminal.
4. Enter the following command.

“java –cp
/home/guide/policy_guide/sample_impl/sunxacml/sunxacml.jar:/home/guide/pol
icy_guide/sample_impl/ImplGuideSunXACML/target/PolicyGuide-SunXACML-
Modules-1.0-SNAPSHOT.jar:/home/guide/.m2/repository/javax/javaee-web-
api/6.0-RC2/javaee-web-api-6.0-RC2.jar –
Dcom.sun.xacml.SunXACMLConfigFile=<path/to/SunXACML-config-file>
com.sun.xacml.support.SimplePDP –config <path/to/request-file>”

Replace “<path/to/SunXACML-config-file>” with the path to the SunXACML
configuration file. Replace “<path/to/request-file>” with the path to the file that
contains the XACML request you want to evaluate. Be sure to not hit the enter key
until the entire command is typed into the terminal.

If you want to output the XACML response to a file, then add the following to the end
of the above command (be sure to first type a space):
“ > <path/to/response-file>” replacing “<path/to/response-file>” with the path to
the file that will contain the XACML response.

We suggest you enter this command from the “/home/guide/policy_guide/”
directory.

The end

Installing the Dependency Libraries

 93

Prerequisites:
1. Download and extract the accompanying file set. The virtual machine already

has this file set extracted at the “/home/guide/policy_guide/” directory.
2. Note that this has already been done on the distributed virtual machine.

Steps:

1. Open a terminal.
2. Go to the “$SAMPLE_IMPL/” directory.

3. Install the SunXACML library; do the following:

a. Go to the “$SAMPLE_IMPL/sunxacml/” directory.
b. Enter

“mvn install:install-file –Dfile=sunxacml.jar –DpomFile=pom.xml”

4. Install the wslib library; do the following:
a. Go to the “$SAMPLE_IMPL/wslib/” directory.
b. Enter

“mvn install:install-file –Dfile=wslib.jar –DpomFile=pom.xml”

5. Install the SunXACML modules; do the following:
a. Go to the “$SAMPLE_IMPL/ImplGuideSunXACML/” directory.
b. Enter “mvn clean install”

6. Install the obligations module; do the following:

a. Go to the “$SAMPLE_IMPL/obligation” directory.
b. Enter “mvn clean install”

7. (Re-)Deploy the STS/ADS module; do the following:

a. Make sure “domain1” is running in Glassfish.
b. Open a web browser on the local machine
c. Browse to “http://localhost:4848”
d. On the left, vertical menu, click “Applications”.
e. If “m2sts” is listed, then click the checkbox next to “m2sts” and then

click “Undeploy”.
f. Click “Deploy”.
g. Under “Packaged File to Be Uploaded to the Server”, click “Browse”.
h. Go to the “$SAMPLE_IMPL/” directory.
i. Select the “m2sts.war” file and click “Open”.
j. Click “OK”.

The end

Building the WSC/Web Portal

Prerequisites:

 94

1. Install the dependency libraries.

Steps:

1. Open a terminal.
2. Go to the “$SAMPLE_IMPL/wsc” directory.
3. Enter “mvn clean package”

The end

Building the WSP

Prerequisites:

1. Install the dependency libraries.

Steps:

1. Open a terminal.
2. Go to the “$SAMPLE_IMPL/wsp” directory.
3. Enter “mvn clean package”

The end

(Re-)Deploying the WSC/Web Portal in the virtual machine

Prerequisites:

1. Build the WSC/Web Portal.
2. Make sure Apache is running.

Steps:

1. Copy the “$SAMPLE_IMPL/wsc/target/m2wsc.war” file to the
“/opt/tomcat/webapps/” directory (replacing the existing m2wsc.war file if
it’s already in “/opt/tomcat/webapps/”).

a. This needs to be done as root.

To do this you can run the following command:
“sudo cp /home/guide/policy_guide/sample_impl/wsc/target/m2wsc.war
/opt/tomcat/webapps/”.

2. Restart Apache.

The end

(Re-)Deploying the WSP in the virtual machine

 95

Prerequisites:
1. Build the WSP.
2. Make sure “domain1” is running in Glassfish.

Steps:

1. Open a web browser on the local machine.
2. Browse to “http://localhost:4848”.
3. On the left, vertical menu, click “Applications”.
4. If “m2wsp” is listed, then click the checkbox next to “m2wsp” and then click

“Undeploy”.
5. Click “Deploy”.
6. Under “Packaged File to Be Uploaded to the Server”, click “Browse”.
7. Go to the “$SAMPLE_IMPL/wsp/target” directory.
8. Select the “m2wsp.war” file and click “Open”.
9. Click “OK”.

The end

Restarting the “domain1” in Glassfish in the virtual machine

Notes:
In the virtual machine, Glassfish and domain1 are configured to start automatically
on boot.

Steps:

1. Open a terminal.
2. Go to the “/opt/glassfish3/glassfish/bin/” directory.
3. Enter “sudo asadmin stop-domain domain1”
4. Wait for the command to complete.
5. Enter “sudo asadmin start-domain domain1”

The end

Restarting Apache in the virtual machine

Open a terminal and enter: “sudo /etc/init.d/httpd restart”
The end

Appendix B: Labels

 96

Label Definition Description

$POLICY_GUIDE /home/guide/policy_guide Base directory

containing all files

associated with

this Guide

$SAMPLE_IMPL $POLICY_GUIDE/sample_impl Base directory

containing all

sample

implementation

files

$WSP_PRJ $SAMPLE_IMPL/wsp The WSP module

$WSC_PRJ $ SAMPLE_IMPL /wsc The WSC module

$OBLG_PRJ $ SAMPLE_IMPL /obligation The Obligations

module

$SX_MOD_PRJ $ SAMPLE_IMPL /ImplGuideSunXACML The SunXACML

Modules module

$WEBPORTAL_URL http://sp.example.org/m2wsc/index.jsp The URL to access

the sample

application

$WSP_SX_CONFIG $WSP_PRJ/src/main/webapp/META-

INF/policies/SunXACMLConfig.xml

The WSP’s

SunXACML

configuration file

$WSP_RPF_CONFIG $WSP_PRJ/src/main/webapp/META-

INF/policies/ReferencePolicyFinderConfig.xml

The WSP’s

Reference Policy

Finder

configuration file

$WSP_OH_CONFIG $WSP_PRJ/src/main/webapp/META-

INF/ObligationHandlerConfig.xml

The WSP’s

Obligation

Handler

configuration file

Appendix C: XACML Reference Tables

Predicate value(s) Resulting Instance value

All True Match

No False and at least

one Indeterminate

Indeterminate

At least one False No-Match

Table 17: Instance Evaluation Table

 97

Instance value(s) Resulting Class value

At least one Match Match

No Matches and at

least one

Indeterminate

Indeterminate

All No-Match No-Match

Table 18: Class Evaluation Table

Subjects Value Resources

Value

Actions Value Environments

Value

Resulting

Target Value

Match Match Match Match Match

No-Match Match or No-

Match

Match or No-

Match

Match or No-

Match

No-Match

Match or No-

Match

No-Match Match or No-

Match

Match or No-

Match

No-Match

Match or No-

Match

Match or No-

Match

No-Match Match or No-

Match

No-Match

Match or No-

Match

Match or No-

Match

Match or No-

Match

No-Match No-Match

Indeterminate Don’t Care Don’t Care Don’t Care Indeterminate

Don’t Care Indeterminate Don’t Care Don’t Care Indeterminate

Don’t Care Don’t Care Indeterminate Don’t Care Indeterminate

Don’t Care Don’t Care Don’t Care Indeterminate Indeterminate

Table 19: Target Evaluation Table

 98

Target Value Condition

Value

Resulting Rule

Value

Match True Effect

Match False NotApplicable

Match Indeterminate Indeterminate

No-Match Don’t Care NotApplicable

Indeterminate Don’t Care Indeterminate

Table 20: Rule Evaluation Table

Target Value Rule Values Resulting Policy Value

Match At Least One

Effect

Specified by the Rule-

Combining Alg

Match All

NotApplicable

NotApplicable

Match At Least One

Indeterminate

Specified by the Rule-

Combining Alg

No-Match Don’t Care NotApplicable

Indeterminate Don’t Care Indeterminate

Table 21: Policy Evaluation Table

Target Value Policy Values Resulting Policy Set

Value

Match At Least One

Permit/Deny

Specified by the

Rule-Combining Alg

Match All

NotApplicable

NotApplicable

Match At Least One

Indeterminate

Specified by the

Rule-Combining Alg

No-Match Don’t Care NotApplicable

Indeterminate Don’t Care Indeterminate

Table 22: Policy Set Evaluation Table

 99

Appendix D: Virtual Machine Details and Installed Software

VMWare virtual machine:

• 1 GB RAM

• 8 GB hard disk

• 1 CPU

• NAT networking

• User account:
o username: guide
o password: gtrincscglobal

• root password: gtrincscglobal

Software:

• CentOS v5

• Apache v2

• Tomcat v6

• Maven v2

• Java v6

• Glassfish v3

